The $q$-Schur${}^{2}$ algebra
HTML articles powered by AMS MathViewer
- by Jie Du and Leonard Scott
- Trans. Amer. Math. Soc. 352 (2000), 4325-4353
- DOI: https://doi.org/10.1090/S0002-9947-00-02262-5
- Published electronically: May 23, 2000
- PDF | Request permission
Abstract:
We study a class of endomomorphism algebras of certain $q$-permutation modules over the Hecke algebra of type $B$, whose summands involve both parabolic and quasi-parabolic subgroups, and prove that these algebras are integrally free and quasi-hereditary, and are stable under base change. Some consequences for decomposition numbers are discussed.References
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- E. Cline, B. Parshall, and L. Scott, Integral and graded quasi-hereditary algebras. I, J. Algebra 131 (1990), no.Β 1, 126β160. MR 1055002, DOI 10.1016/0021-8693(90)90169-O
- Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no.Β 4, 511β534. MR 1245719, DOI 10.2748/tmj/1178225846
- E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85β99. MR 961165
- Edward Cline, Brian Parshall, and Leonard Scott, Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no.Β 591, viii+119. MR 1350891, DOI 10.1090/memo/0591
- Richard Dipper and Gordon James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), no.Β 1, 20β52. MR 812444, DOI 10.1112/plms/s3-52.1.20
- Richard Dipper and Gordon James, The $q$-Schur algebra, Proc. London Math. Soc. (3) 59 (1989), no.Β 1, 23β50. MR 997250, DOI 10.1112/plms/s3-59.1.23
- Richard Dipper and Gordon James, $q$-tensor space and $q$-Weyl modules, Trans. Amer. Math. Soc. 327 (1991), no.Β 1, 251β282. MR 1012527, DOI 10.1090/S0002-9947-1991-1012527-1
- Richard Dipper and Gordon James, Representations of Hecke algebras of type $B_n$, J. Algebra 146 (1992), no.Β 2, 454β481. MR 1152915, DOI 10.1016/0021-8693(92)90078-Z
- Richard Dipper, Gordon James, and Eugene Murphy, Hecke algebras of type $B_n$ at roots of unity, Proc. London Math. Soc. (3) 70 (1995), no.Β 3, 505β528. MR 1317512, DOI 10.1112/plms/s3-70.3.505
- Jie Du, Integral Schur algebras for $\textrm {GL}_2$, Manuscripta Math. 75 (1992), no.Β 4, 411β427. MR 1168178, DOI 10.1007/BF02567095
- Jie Du, Brian Parshall, and Leonard Scott, Stratifying endomorphism algebras associated to Hecke algebras, J. Algebra 203 (1998), no.Β 1, 169β210. MR 1620729, DOI 10.1006/jabr.1997.7325
- J. Du, B. Parshall, and L. Scott, Cells and $q$-Schur algebras, Transform. Groups 3 (1998), no.Β 1, 33β49. MR 1603810, DOI 10.1007/BF01237838
- Jie Du, Brian Parshall, and Leonard Scott, Quantum Weyl reciprocity and tilting modules, Comm. Math. Phys. 195 (1998), no.Β 2, 321β352. MR 1637785, DOI 10.1007/s002200050392
- Jie Du and Hebing Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. Amer. Math. Soc. 350 (1998), no.Β 8, 3207β3235. MR 1603902, DOI 10.1090/S0002-9947-98-02305-8
- J. Du and H. Rui, Borel type subalgebras of the $q$-Schur$^{m}$ algebra, J. Algebra 123 (1999), 567β595.
- Jie Du and Leonard Scott, Lusztig conjectures, old and new. I, J. Reine Angew. Math. 455 (1994), 141β182. MR 1293877, DOI 10.1515/crll.1994.455.141
- Meinolf Geck and Gerhard Hiss, Modular representations of finite groups of Lie type in non-defining characteristic, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, BirkhΓ€user Boston, Boston, MA, 1997, pp.Β 195β249. MR 1429874
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no.Β 1, 1β34. MR 1376244, DOI 10.1007/BF01232365
- J. A. Green, Combinatorics and the Schur algebra, J. Pure Appl. Algebra 88 (1993), no.Β 1-3, 89β106. MR 1233316, DOI 10.1016/0022-4049(93)90015-L
- R. M. Green, A straightening formula for quantized codeterminants, Comm. Algebra 24 (1996), no.Β 9, 2887β2913. MR 1396863, DOI 10.1080/00927879608825720
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no.Β 3, 247β252. MR 841713, DOI 10.1007/BF00400222
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. E. Murphy, The representations of Hecke algebras of type $A_n$, J. Algebra 173 (1995), no.Β 1, 97β121. MR 1327362, DOI 10.1006/jabr.1995.1079
- B. Parshall and L. Scott, Derived categories, quasi-hereditary algebras, and algebraic groups, Lecture Notes Series, Carleton University 3 (1988), 1-105.
- Brian Parshall and Jian Pan Wang, Quantum linear groups, Mem. Amer. Math. Soc. 89 (1991), no.Β 439, vi+157. MR 1048073, DOI 10.1090/memo/0439
- Jian Yi Shi, A result on the Bruhat order of a Coxeter group, J. Algebra 128 (1990), no.Β 2, 510β516. MR 1036406, DOI 10.1016/0021-8693(90)90038-P
Bibliographic Information
- Jie Du
- Affiliation: School of Mathematics, University of New South Wales, Sydney 2052, Australia
- MR Author ID: 242577
- Email: j.du@unsw.edu.au
- Leonard Scott
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- MR Author ID: 157725
- Email: lls2l@virginia.edu
- Received by editor(s): March 3, 1997
- Received by editor(s) in revised form: October 28, 1998
- Published electronically: May 23, 2000
- Additional Notes: The authors would like to thank ARC for support under the Large Grant A69530243 as well as NSF, and the Universities of Virginia and New South Wales for their cooperation. The first author also thanks the Newton Institute at Cambridge for its hospitality.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4325-4353
- MSC (2000): Primary 20C08, 20G05, 20C33
- DOI: https://doi.org/10.1090/S0002-9947-00-02262-5
- MathSciNet review: 1655991