Robin boundary value problems on arbitrary domains
HTML articles powered by AMS MathViewer
- by Daniel Daners
- Trans. Amer. Math. Soc. 352 (2000), 4207-4236
- DOI: https://doi.org/10.1090/S0002-9947-00-02444-2
- Published electronically: March 21, 2000
- PDF | Request permission
Abstract:
We develop a theory of generalised solutions for elliptic boundary value problems subject to Robin boundary conditions on arbitrary domains, which resembles in many ways that of the Dirichlet problem. In particular, we establish $L_p$-$L_q$-estimates which turn out to be the best possible in that framework. We also discuss consequences to the spectrum of Robin boundary value problems. Finally, we apply the theory to parabolic equations.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Wolfgang Arendt, Gaussian estimates and interpolation of the spectrum in $L^p$, Differential Integral Equations 7 (1994), no. 5-6, 1153–1168. MR 1269649
- J. Thomas Beale, Scattering frequencies of reasonators, Comm. Pure Appl. Math. 26 (1973), 549–563. MR 352730, DOI 10.1002/cpa.3160260408
- Marie-Hélène Bossel, Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys. 39 (1988), no. 5, 733–742 (French, with English summary). MR 963641, DOI 10.1007/BF00948733
- E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988), no. 1, 120–156. MR 949628, DOI 10.1016/0022-0396(88)90021-6
- E. N. Dancer and D. Daners, A priori bounds for solutions and spectra of Robin boundary value problems, Tech. Report No. 94-33, University of Sydney, 1994.
- E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), no. 1, 86–132. MR 1458457, DOI 10.1006/jdeq.1997.3256
- Daniel Daners, Heat kernel estimates for operators with boundary conditions, Math. Nachr., to appear.
- Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075, DOI 10.1007/978-3-642-58090-1
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- M. A. Krasnosel′skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229–231. MR 0119086
- Peter D. Lax and Ralph S. Phillips, On the scattering frequencies of the Laplace operator for exterior domains, Comm. Pure Appl. Math. 25 (1972), 85–101. MR 296471, DOI 10.1002/cpa.3160250108
- Moshe Marcus and Victor J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Functional Analysis 33 (1979), no. 2, 217–229. MR 546508, DOI 10.1016/0022-1236(79)90113-7
- Morgan Ward, Note on the general rational solution of the equation $ax^2-by^2=z^3$, Amer. J. Math. 61 (1939), 788–790. MR 23, DOI 10.2307/2371337
- —, Zur Theorie Sobolewscher Räume, Teubner-Texte zur Mathematik, Teubner, Leipzig, 1981.
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Derek W. Robinson, Elliptic operators and Lie groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144020
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
- René P. Sperb, Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran, Z. Angew. Math. Phys. 23 (1972), 231–244 (German, with English summary). MR 312800, DOI 10.1007/BF01593087
- René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561
- Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 265–308. MR 369884
- N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Daniel Daners
- Affiliation: School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
- MR Author ID: 325132
- ORCID: 0000-0002-0122-3789
- Email: D.Daners@maths.usyd.edu.au
- Received by editor(s): April 5, 1996
- Received by editor(s) in revised form: May 19, 1998
- Published electronically: March 21, 2000
- Additional Notes: Supported by a grant of the Australian Research Council
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4207-4236
- MSC (2000): Primary 35J25; Secondary 35D10, 35B45
- DOI: https://doi.org/10.1090/S0002-9947-00-02444-2
- MathSciNet review: 1650081