Dihedral coverings of algebraic surfaces and their application
HTML articles powered by AMS MathViewer
- by Hiro-o Tokunaga
- Trans. Amer. Math. Soc. 352 (2000), 4007-4017
- DOI: https://doi.org/10.1090/S0002-9947-00-02524-1
- Published electronically: March 15, 2000
- PDF | Request permission
Abstract:
In this article, we study dihedral coverings of algebraic surfaces branched along curves with at most simple singularities. A criterion for a reduced curve to be the branch locus of some dihedral covering is given. As an application we have the following: Let $B$ be a reduced plane curve of even degree $d$ having only $a$ nodes and $b$ cusps. If $2a + 6b > 2d^2 - 6d + 6$, then $\pi _1(\mathbf {P}^2 \setminus B)$ is non-abelian. Note that Nori’s result implies that $\pi _1(\mathbf {P}^2 \setminus B)$ is abelian, provided that $2a + 6b < d^2$.References
- Enrique Artal-Bartolo, Sur les couples de Zariski, J. Algebraic Geom. 3 (1994), no. 2, 223–247 (French). MR 1257321
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Egbert Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76–102 (German). MR 206973, DOI 10.1007/BF01361440
- Egbert Brieskorn, Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann. 178 (1968), 255–270 (German). MR 233819, DOI 10.1007/BF01352140
- F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984), no. 2, 483–515. MR 755236
- Wolfgang Ebeling, Lattices and codes, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1994. A course partially based on lectures by F. Hirzebruch. MR 1280458, DOI 10.1007/978-3-322-96879-1
- Eiji Horikawa, On deformations of quintic surfaces, Proc. Japan Acad. 49 (1973), 377–379. MR 330173
- Rick Miranda and Ulf Persson, Configurations of $\textrm {I}_n$ fibers on elliptic $K3$ surfaces, Math. Z. 201 (1989), no. 3, 339–361. MR 999732, DOI 10.1007/BF01214900
- V.V. Nikulin: Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 103-167 (1980).
- Madhav V. Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305–344. MR 732347
- M. Oka: Geometry of cuspidal sextics and their dual curves, preprint.
- Tetsuji Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240. MR 1081832
- Michel Vaquié, Irrégularité des revêtements cycliques des surfaces projectives non singulières, Amer. J. Math. 114 (1992), no. 6, 1187–1199 (French). MR 1198299, DOI 10.2307/2374758
- H. Tokunaga: Dihedral coverings of $\mathbb {P} ^{2}$ branched along quintic curves, preprint.
- Hiro-o Tokunaga, A remark on E. Artal-Bartolo’s paper: “On Zariski pairs” [J. Algebraic Geom. 3 (1994), no. 2, 223–247; MR1257321 (94m:14033)], Kodai Math. J. 19 (1996), no. 2, 207–217. MR 1397422, DOI 10.2996/kmj/1138043600
- Hiro-o Tokunaga, Dihedral coverings branched along maximizing sextics, Math. Ann. 308 (1997), no. 4, 633–648. MR 1464914, DOI 10.1007/s002080050094
- Hiro-o Tokunaga, Some examples of Zariski pairs arising from certain elliptic $K3$ surfaces, Math. Z. 227 (1998), no. 3, 465–477. MR 1612673, DOI 10.1007/PL00004386
- Gang Xiao, Galois covers between $K3$ surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 73–88 (English, with English and French summaries). MR 1385511
- O. Zariski: On the problem of existence of algebraic functions of two variables possessing a given branch curves, Amer. J. Math. 51, 305-328 (1929).
Bibliographic Information
- Hiro-o Tokunaga
- Affiliation: Department of Mathematics and Information Science, Kochi University, Kochi 780-8520, Japan
- Address at time of publication: Department of Mathematics, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397 Japan
- Email: tokunagamath.kochi-u.ac.jp
- Received by editor(s): June 20, 1998
- Published electronically: March 15, 2000
- Additional Notes: This research is partly supported by the Grant-in-Aid for Encouragement of Young Scientists 09740031 from the Ministry of Education, Science and Culture.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4007-4017
- MSC (2000): Primary 14E20; Secondary 14E15
- DOI: https://doi.org/10.1090/S0002-9947-00-02524-1
- MathSciNet review: 1675238