Representing nonnegative homology classes of $\mathbb {C}P^2\#n\overline {\mathbb {C}P}{}^2$ by minimal genus smooth embeddings
HTML articles powered by AMS MathViewer
- by Bang-He Li
- Trans. Amer. Math. Soc. 352 (2000), 4155-4169
- DOI: https://doi.org/10.1090/S0002-9947-99-02422-8
- Published electronically: May 21, 1999
- PDF | Request permission
Abstract:
For any nonnegative class $\xi$ in $H_2({\mathbb C}P^2\#n{\overline {{\mathbb C}P}}{}^2, {\mathbf Z})$, the minimal genus of smoothly embedded surfaces which represent $\xi$ is given for $n\leq 9$, and in some cases with $n\geq 10$, the minimal genus is also given. For the finiteness of orbits under diffeomorphisms with minimal genus $g$, we prove that it is true for $n\leq 8$ with $g\geq 1$ and for $n\leq 9$ with $g\geq 2$.References
- S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), no.Β 3, 397β428. MR 910015
- S. K. Donaldson, The Seiberg-Witten equations and $4$-manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no.Β 1, 45β70. MR 1339810, DOI 10.1090/S0273-0979-96-00625-8
- Robert Friedman and John W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differential Geom. 27 (1988), no.Β 2, 297β369. MR 925124
- Ronald Fintushel and Ronald J. Stern, Immersed spheres in $4$-manifolds and the immersed Thom conjecture, Turkish J. Math. 19 (1995), no.Β 2, 145β157. MR 1349567
- Hong Zhu Gao, Representing homology classes of almost definite $4$-manifolds, Topology Appl. 52 (1993), no.Β 2, 109β120. MR 1241187, DOI 10.1016/0166-8641(93)90030-H
- Danyan Gan, Embedded $2$-spheres in indefinite $4$-manifolds, Chinese Ann. Math. Ser. B 17 (1996), no.Β 3, 257β262. A Chinese summary appears in Chinese Ann. Math. Ser. A 17 (1996), no. 4, 515. MR 1415253
- W. C. Hsiang and R. H. Szczarba, On embedding surfaces in four-manifolds, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp.Β 97β103. MR 0339239
- Kazunori Kikuchi, Representing positive homology classes of $\textbf {C}\textrm {P}^2\#2\overline {\textbf {C}\textrm {P}}{}^2$ and $\textbf {C}\textrm {P}^2\#3\overline {\textbf {C}\textrm {P}}{}^2$, Proc. Amer. Math. Soc. 117 (1993), no.Β 3, 861β869. MR 1131036, DOI 10.1090/S0002-9939-1993-1131036-X
- Kazunori Kikuchi, Positive $2$-spheres in $4$-manifolds of signature $(1,n)$, Pacific J. Math. 160 (1993), no.Β 2, 245β258. MR 1233354
- Michel A. Kervaire and John W. Milnor, On $2$-spheres in $4$-manifolds, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1651β1657. MR 133134, DOI 10.1073/pnas.47.10.1651
- P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no.Β 6, 797β808. MR 1306022, DOI 10.4310/MRL.1994.v1.n6.a14
- Terry Lawson, Smooth embeddings of $2$-spheres in $4$-manifolds, Exposition. Math. 10 (1992), no.Β 4, 289β309. MR 1184697
- Bang He Li, Embeddings of surfaces in $4$-manifolds. I, II, Chinese Sci. Bull. 36 (1991), no.Β 24, 2025β2029, 2030β2033. MR 1150851
- Bang-He Li and Tian-Jun Li, Minimal genus smooth embeddings in $S^2\times S^2$ and $\textbf {C}\textrm {P}^2\#n\overline {\textbf {C}\textrm {P}}{}^2$ with $n\leq 8$, Topology 37 (1998), no.Β 3, 575β594. MR 1604887, DOI 10.1016/S0040-9383(97)00042-6
- Bang-He Li and Tian-Jun Li, Minimal genus embeddings in $S^2$-bundles over surfaces, Math. Res. Lett. 4 (1997), no.Β 2-3, 379β394. MR 1453068, DOI 10.4310/MRL.1997.v4.n3.a7
- T. J. Li and A. Liu, General wall crossing formula, Math. Res. Lett. 2 (1995), no.Β 6, 797β810. MR 1362971, DOI 10.4310/MRL.1995.v2.n6.a11
- T. J. Li and A. Liu, Symplectic structure on ruled surfaces and a generalized adjunction formula, Math. Res. Lett. 2 (1995), no.Β 4, 453β471. MR 1355707, DOI 10.4310/MRL.1995.v2.n4.a6
- John W. Morgan, ZoltΓ‘n SzabΓ³, and Clifford Henry Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, J. Differential Geom. 44 (1996), no.Β 4, 706β788. MR 1438191
- V. Rohlin, Two-dimensional submanifolds of four-dimensional manifolds, Functional Analysis Appl. 6 (1972), 136β138.
- Daniel Ruberman, The minimal genus of an embedded surface of non-negative square in a rational surface, Turkish J. Math. 20 (1996), no.Β 1, 129β133. MR 1392668
- Clifford Henry Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no.Β 6, 809β822. MR 1306023, DOI 10.4310/MRL.1994.v1.n6.a15
- Clifford Henry Taubes, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Lett. 2 (1995), no.Β 1, 9β13. MR 1312973, DOI 10.4310/MRL.1995.v2.n1.a2
- Clifford Henry Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), no.Β 2, 221β238. MR 1324704, DOI 10.4310/MRL.1995.v2.n2.a10
- β, Talks given at Harvard.
- M. Ue, Embedded surfaces in blowing up rational and elliptic surfaces, (abstract for β Art of Low-Dimensional Topology III"), Preprint of the Division of Mathematics, Kyoto Univ.
- C. T. C. Wall, Classification problems in differential topology. II. Diffeomorphisms of handlebodies, Topology 2 (1963), 263β272. MR 156354, DOI 10.1016/0040-9383(63)90009-0
- Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no.Β 6, 769β796. MR 1306021, DOI 10.4310/MRL.1994.v1.n6.a13
Bibliographic Information
- Bang-He Li
- Affiliation: Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, Peoples Republic of China
- Email: libh@iss06.iss.ac.cn
- Received by editor(s): March 25, 1998
- Published electronically: May 21, 1999
- Additional Notes: The author is supported partially by the Tianyuan Foundation of Peoples Republic of China
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4155-4169
- MSC (1991): Primary 57R95, 57R40
- DOI: https://doi.org/10.1090/S0002-9947-99-02422-8
- MathSciNet review: 1637082