The Mod-2 cohomology of the Bianchi groups
HTML articles powered by AMS MathViewer
- by Ethan Berkove
- Trans. Amer. Math. Soc. 352 (2000), 4585-4602
- DOI: https://doi.org/10.1090/S0002-9947-00-02505-8
- Published electronically: April 21, 2000
- PDF | Request permission
Abstract:
The Bianchi groups are a family of discrete subgroups of $PSL_2(\mathbb C)$ which have group theoretic descriptions as amalgamated products and HNN extensions. Using Bass-Serre theory, we show how the cohomology of these two constructions relates to the cohomology of their pieces. We then apply these results to calculate the mod-2 cohomology ring for various Bianchi groups.References
- Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. MR 1317096, DOI 10.1007/978-3-662-06282-1
- Roger Alperin, Homology of $\textrm {SL}_{2}(\textbf {Z}[\omega ])$, Comment. Math. Helv. 55 (1980), no. 3, 364–377. MR 593052, DOI 10.1007/BF02566693
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- Ethan J. Berkove and Daniel Juan-Pineda, On the $K$-theory of Bianchi groups, Bol. Soc. Mat. Mexicana (3) 2 (1996), no. 1, 15–29. MR 1395908
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- Benjamin Fine, Algebraic theory of the Bianchi groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 129, Marcel Dekker, Inc., New York, 1989. MR 1010229
- Dieter Flöge, Zur Struktur der $\textrm {PSL}_{2}$ über einigen imaginär-quadratischen Zahlringen, Math. Z. 183 (1983), no. 2, 255–279 (German). MR 704107, DOI 10.1007/BF01214824
- Fritz Grunewald and Joachim Schwermer, Subgroups of Bianchi groups and arithmetic quotients of hyperbolic $3$-space, Trans. Amer. Math. Soc. 335 (1993), no. 1, 47–78. MR 1020042, DOI 10.1090/S0002-9947-1993-1020042-6
- Eduardo R. Mendoza, Cohomology of $\textrm {PGL}_{2}$ over imaginary quadratic integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 128, Universität Bonn, Mathematisches Institut, Bonn, 1979. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979. MR 611515
- Joachim Schwermer and Karen Vogtmann, The integral homology of $\textrm {SL}_{2}$ and $\textrm {PSL}_{2}$ of Euclidean imaginary quadratic integers, Comment. Math. Helv. 58 (1983), no. 4, 573–598. MR 728453, DOI 10.1007/BF02564653
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York, [1995?]. Corrected reprint of the 1966 original. MR 1325242
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2
- Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670, DOI 10.1007/BF01455567
Bibliographic Information
- Ethan Berkove
- Affiliation: Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042
- Email: berkovee@lafayette.edu
- Received by editor(s): April 6, 1998
- Published electronically: April 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4585-4602
- MSC (2000): Primary 20J06; Secondary 11F75, 22E40
- DOI: https://doi.org/10.1090/S0002-9947-00-02505-8
- MathSciNet review: 1675241