A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders
HTML articles powered by AMS MathViewer
- by Daniel Simson
- Trans. Amer. Math. Soc. 352 (2000), 4843-4875
- DOI: https://doi.org/10.1090/S0002-9947-00-02575-7
- Published electronically: June 8, 2000
- PDF | Request permission
Abstract:
Let $D$ be a complete discrete valuation domain with the unique maximal ideal ${\mathfrak {p}}$. We suppose that $D$ is an algebra over an algebraically closed field $K$ and $D/{\mathfrak {p}} \cong K$. Subamalgam $D$-suborders $\Lambda ^{\bullet }$ of a tiled $D$-order $\Lambda$ are studied in the paper by means of the integral Tits quadratic form $q_{\Lambda ^{\bullet }}: {\mathbb {Z}}^{n_{1}+2n_{3}+2 } \longrightarrow {\mathbb {Z}}$. A criterion for a subamalgam $D$-order $\Lambda ^{\bullet }$ to be of tame lattice type is given in terms of the Tits quadratic form $q_{{\Lambda ^{\bullet }}}$ and a forbidden list $\Omega _{1},\ldots ,\Omega _{17}$ of minor $D$-suborders of $\Lambda ^{\bullet }$ presented in the tables.References
- David M. Arnold, Representations of partially ordered sets and abelian groups, Abelian group theory (Perth, 1987) Contemp. Math., vol. 87, Amer. Math. Soc., Providence, RI, 1989, pp. 91–109. MR 995268, DOI 10.1090/conm/087/995268
- D. Arnold and M. Dugas, Block rigid almost completely decomposable groups and lattices over multiple pullback rings, J. Pure Appl. Algebra 87 (1993), no. 2, 105–121. MR 1224215, DOI 10.1016/0022-4049(93)90119-E
- D. Arnold, F. Richman, and C. Vinsonhaler, Representations of finite posets and valuated groups, J. Algebra 155 (1993), no. 1, 110–126. MR 1206624, DOI 10.1006/jabr.1993.1033
- Klaus Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), no. 1, 1–12. MR 756773, DOI 10.1007/BF01455993
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1990. With applications to finite groups and orders; Reprint of the 1981 original; A Wiley-Interscience Publication. MR 1038525
- P. Dowbor and S. Kasjan, Galois covering technique and tame non-simply connected posets of polynomial growth, J. Pure Appl. Algebra 147 (2000), 1–24.
- Piotr Dowbor and Andrzej Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 (1985), no. 6, 522–529. MR 797444, DOI 10.1007/BF01193992
- Piotr Dowbor and Andrzej Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), no. 2, 311–337. MR 896100, DOI 10.1007/BF02564450
- Yu. A. Drozd and G.-M. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules, Math. Ann. 294 (1992), no. 3, 387–394. MR 1188126, DOI 10.1007/BF01934330
- Y. A. Drozd, Cohen-Macaulay modules and vector bundles, Proc. Euroconference “Interactions between Ring Theory and Representations of Algebras”, Murcia, 12-17 January 1998, Lecture Notes in Pure and Appl. Math. (to appear).
- E. L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978), no. 1, 53–84. MR 497882, DOI 10.1307/mmj/1029002006
- Jeremy Haefner and Lee Klingler, Special quasi-triads and integral group rings of finite representation type. I, II, J. Algebra 158 (1993), no. 2, 279–322, 323–374. MR 1226795, DOI 10.1006/jabr.1993.1135
- Hans-Joachim von Höhne and Daniel Simson, Bipartite posets of finite prinjective type, J. Algebra 201 (1998), no. 1, 86–114. MR 1608695, DOI 10.1006/jabr.1997.7261
- Stanisław Kasjan, Minimal bipartite algebras of infinite prinjective type with prin-preprojective component, Colloq. Math. 76 (1998), no. 2, 295–317. MR 1618720, DOI 10.4064/cm-76-2-295-317
- Stanisław Kasjan and Daniel Simson, Varieties of poset representations, tameness and minimal posets of wild prinjective type, Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992) Carleton-Ottawa Math. Lecture Note Ser., vol. 14, Carleton Univ., Ottawa, ON, 1992, pp. 45. MR 1206948
- Stanisław Kasjan and Daniel Simson, Fully wild prinjective type of posets and their quadratic forms, J. Algebra 172 (1995), no. 2, 506–529. MR 1322415, DOI 10.1016/S0021-8693(05)80013-4
- Stanisław Kasjan and Daniel Simson, Tame prinjective type and Tits form of two-peak posets $I$, J. Pure Appl. Algebra 106 (1996), no. 3, 307–330. MR 1375827, DOI 10.1016/0022-4049(94)00070-0
- Stanisław Kasjan and Daniel Simson, Tame prinjective type and Tits form of two-peak posets. II, J. Algebra 187 (1997), no. 1, 71–96. MR 1425560, DOI 10.1006/jabr.1997.6751
- Stanisław Kasjan and Daniel Simson, A subbimodule reduction, a peak reduction functor and tame prinjective type, Bull. Polish Acad. Sci. Math. 45 (1997), no. 1, 89–107. MR 1444674
- Justyna Kosakowska and Daniel Simson, On Tits form and prinjective representations of posets of finite prinjective type, Comm. Algebra 26 (1998), no. 5, 1613–1623. MR 1622434, DOI 10.1080/00927879808826225
- M. V. Milovanov, Determinability of solvable Lie groups from uniform discrete subgroups, Dokl. Akad. Nauk BSSR 21 (1977), no. 2, 108–111, 187 (Russian). MR 0437680
- L. A. Nazarova and A. V. Roĭter, Representations of bipartite completed posets, Comment. Math. Helv. 63 (1988), no. 3, 498–526. MR 960771, DOI 10.1007/BF02566776
- J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), no. 2, 733–753. MR 1025753, DOI 10.1090/S0002-9947-1992-1025753-3
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- K. W. Roggenkamp, Auslander-Reiten species of Bäckström orders, J. Algebra 85 (1983), no. 2, 449–476. MR 725095, DOI 10.1016/0021-8693(83)90107-2
- K. W. Roggenkamp, Lattices over subhereditary orders and socle-projective modules, J. Algebra 121 (1989), no. 1, 40–67. MR 992315, DOI 10.1016/0021-8693(89)90084-7
- Claus Michael Ringel and Klaus W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra 60 (1979), no. 1, 11–42. MR 549096, DOI 10.1016/0021-8693(79)90106-6
- Daniel Simson, Socle reductions and socle projective modules, J. Algebra 103 (1986), no. 1, 18–68. MR 860687, DOI 10.1016/0021-8693(86)90167-5
- Daniel Simson, Representations of bounded stratified posets, coverings and socle projective modules, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 499–533. MR 1171251
- Daniel Simson, A splitting theorem for multipeak path algebras, Fund. Math. 138 (1991), no. 2, 113–137. MR 1124540, DOI 10.4064/fm-138-2-113-137
- Daniel Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules, Comm. Algebra 20 (1992), no. 12, 3541–3591. MR 1191967, DOI 10.1080/00927879208824529
- Daniel Simson, Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Applications, vol. 4, Gordon and Breach Science Publishers, Montreux, 1992. MR 1241646
- Daniel Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), no. 1, 77–103. MR 1246276, DOI 10.1016/0022-4049(93)90138-J
- Daniel Simson, On representation types of module subcategories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), no. 2, 77–93 (1994). MR 1414754
- Daniel Simson, A reduction functor, tameness, and Tits form for a class of orders, J. Algebra 174 (1995), no. 2, 430–452. MR 1334218, DOI 10.1006/jabr.1995.1133
- Daniel Simson, Triangles of modules and non-polynomial growth, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 33–38 (English, with English and French summaries). MR 1340078
- Daniel Simson, Representation embedding problems, categories of extensions and prinjective modules, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 601–639. MR 1388077
- Daniel Simson, Socle projective representations of partially ordered sets and Tits quadratic forms with applications to lattices over orders, Abelian groups and modules (Colorado Springs, CO, 1995) Lecture Notes in Pure and Appl. Math., vol. 182, Dekker, New York, 1996, pp. 73–111. MR 1415624
- Daniel Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders, J. Math. Soc. Japan 49 (1997), no. 1, 31–68. MR 1419438, DOI 10.2969/jmsj/04910031
- D. Simson, Three-partite subamalgams of tiled orders of finite lattice type, J. Pure Appl. Algebra 138 (1999), 151–184.
- D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders, in Proc. AMS-IMS-SIAM Summer Research Conference “Trends in the Representation Theory of Finite Dimensional Algebras”, The University of Washington, July 20-24, 1997, Contemporary Math. 229 (1998), 307–342.
- D. Simson, Tame three-partite subamalgams of tiled orders of polynomial growth, Colloq. Math. 81 (1999), 237–262.
- D. Simson, Cohen-Macaulay modules over classical orders, Proc. Euroconference “Interactions between Ring Theory and Representations of Algebras”, Murcia, 12–17 January 1998, Lecture Notes in Pure and Appl. Math. (to appear).
- Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937, DOI 10.1017/CBO9780511600685
- A. G. Zavadskiĭ and V. V. Kiričenko, Torsion-free modules over primary rings, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 57 (1976), 100–116, 177 (Russian). Modules in representation theory and algebraic geometry. MR 0491829
- A. G. Zavadskiĭ and V. V. Kiričenko, Semimaximal rings of finite type, Mat. Sb. (N.S.) 103(145) (1977), no. 3, 323–345, 463 (Russian). MR 0457501
- A. G. Zavadskij, Representations of partially ordered sets of finite growth, Kievskij Ordena Trudovovo Krasnovo Znameni Inžinerno-Stroitelnyi Institut (KISI), Dep. Ukr. NIINTI, No. 413–Yk–D83, Kiev, 1983, pp. 1–76 (Russian).
- A. G. Zavadskij, Differentiation algorithm and classification of representations, Izv. Akad. Nauk SSSR, Ser. Mat. 55 (1991), 1007–1048 (in Russian); English transl., Math. USSR Izvestia 39 (1992), 975–1012.
Bibliographic Information
- Daniel Simson
- Affiliation: Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
- Email: simson@mat.uni.torun.pl
- Received by editor(s): November 12, 1997
- Published electronically: June 8, 2000
- Additional Notes: Partially supported by Polish KBN Grant 2 P0 3A 012 16.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4843-4875
- MSC (2000): Primary 16G30, 16G50, 15A21; Secondary 15A63, 16G60
- DOI: https://doi.org/10.1090/S0002-9947-00-02575-7
- MathSciNet review: 1695036
Dedicated: Dedicated to Klaus Roggenkamp on the occasion of his 60th birthday