Principal curvatures of isoparametric hypersurfaces in $\mathbb {C}P^{n}$
HTML articles powered by AMS MathViewer
- by Liang Xiao
- Trans. Amer. Math. Soc. 352 (2000), 4487-4499
- DOI: https://doi.org/10.1090/S0002-9947-00-02578-2
- Published electronically: June 13, 2000
- PDF | Request permission
Abstract:
Let $M$ be an isoparametric hypersurface in $\mathbb {C}P^{n}$, and $\overline {M}$ the inverse image of $M$ under the Hopf map. By using the relationship between the eigenvalues of the shape operators of $M$ and $\overline {M}$, we prove that $M$ is homogeneous if and only if either $g$ or $l$ is constant, where $g$ is the number of distinct principal curvatures of $M$ and $l$ is the number of non-horizontal eigenspaces of the shape operator on $\overline {M}$.References
- Uwe Abresch, Notwendige Bedingungen für isoparametrische Hyperflächen in Sphären mit mehr als drei verschiedenen Hauptkrümmungen, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 146, Universität Bonn, Mathematisches Institut, Bonn, 1982 (German). MR 701112
- E. Cartan, Familles des surfaces isoparametriques dans les espace a courbure constante, Ann. Mat. Pura Appl. (4) 17(1938) 177-191.
- Josef Dorfmeister and Erhard Neher, Isoparametric hypersurfaces, case $g=6,\;m=1$, Comm. Algebra 13 (1985), no. 11, 2299–2368. MR 807479, DOI 10.1080/00927878508823278
- Makoto Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), no. 1, 137–149. MR 837803, DOI 10.1090/S0002-9947-1986-0837803-2
- Hans Friedrich Münzner, Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), no. 1, 57–71 (German). MR 583825, DOI 10.1007/BF01420281
- Hans Friedrich Münzner, Isoparametrische Hyperflächen in Sphären. II. Über die Zerlegung der Sphäre in Ballbündel, Math. Ann. 256 (1981), no. 2, 215–232 (German). MR 620709, DOI 10.1007/BF01450799
- Barrett O’Neill, Submersions and geodesics, Duke Math. J. 34 (1967), 363–373. MR 216432
- Kwang Sung Park, Isoparametric families on projective spaces, Math. Ann. 284 (1989), no. 3, 503–513. MR 1001717, DOI 10.1007/BF01442500
- Chia-Kuei Peng and Zi Xin Hou, A remark on the isoparametric polynomials of degree $6$, Differential geometry and topology (Tianjin, 1986–87) Lecture Notes in Math., vol. 1369, Springer, Berlin, 1989, pp. 222–224. MR 1001188, DOI 10.1007/BFb0087535
- Ryoichi Takagi, A class of hypersurfaces with constant principal curvatures in a sphere, J. Differential Geometry 11 (1976), no. 2, 225–233. MR 425848
- Ryoichi Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka Math. J. 10 (1973), 495–506. MR 336660
- Ryoichi Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43–53. MR 355906, DOI 10.2969/jmsj/02710043
- Ryoichi Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures. II, J. Math. Soc. Japan 27 (1975), no. 4, 507–516. MR 400120, DOI 10.2969/jmsj/02740507
- C.-L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geom. 42 (1995), no. 3, 665–718. MR 1367405
- Qi Ming Wang, Isoparametric hypersurfaces in complex projective spaces, Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980) Sci. Press Beijing, Beijing, 1982, pp. 1509–1523. MR 714387
- Liang Xiao, Isoparametric submanifolds of complex projective spaces, Acta Math. Sinica 38 (1995), no. 6, 845–856 (Chinese, with English and Chinese summaries). MR 1404301
- Liang Xiao, Polynomial representations of homogeneous isoparametric submanifolds, Adv. in Math. (China) 24 (1995), no. 2, 145–154 (Chinese, with English and Chinese summaries). MR 1340260
Bibliographic Information
- Liang Xiao
- Affiliation: Department of Mathematics, Graduate School, University of Science and Technology of China (Beijing), P.O. Box 3908, Beijing 100039, P.R.China
- Email: lxiao@tonghua.com.cn
- Received by editor(s): December 20, 1998
- Received by editor(s) in revised form: March 25, 1999
- Published electronically: June 13, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4487-4499
- MSC (2000): Primary 53C40
- DOI: https://doi.org/10.1090/S0002-9947-00-02578-2
- MathSciNet review: 1779484