$q$-Krawtchouk polynomials as spherical functions on the Hecke algebra of type $B$
HTML articles powered by AMS MathViewer
- by H. T. Koelink
- Trans. Amer. Math. Soc. 352 (2000), 4789-4813
- DOI: https://doi.org/10.1090/S0002-9947-00-02588-5
- Published electronically: April 21, 2000
- PDF | Request permission
Abstract:
The Hecke algebra for the hyperoctahedral group contains the Hecke algebra for the symmetric group as a subalgebra. Inducing the index representation of the subalgebra gives a Hecke algebra module, which splits multiplicity free. The corresponding zonal spherical functions are calculated in terms of $q$-Krawtchouk polynomials using the quantised enveloping algebra for ${\mathfrak {sl}}(2,\mathbb {C})$. The result covers a number of previously established interpretations of ($q$-)Krawtchouk polynomials on the hyperoctahedral group, finite groups of Lie type, hypergroups and the quantum $SU(2)$ group.References
- Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $(\textbf {Z}/r\textbf {Z})\wr {\mathfrak {S}}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216–243. MR 1279219, DOI 10.1006/aima.1994.1057
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18, Springer-Verlag, Berlin, 1989. MR 1002568, DOI 10.1007/978-3-642-74341-2
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81–116. MR 347996, DOI 10.1007/BF02684695
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- Charles F. Dunkl, A Krawtchouk polynomial addition theorem and wreath products of symmetric groups, Indiana Univ. Math. J. 25 (1976), no. 4, 335–358. MR 407346, DOI 10.1512/iumj.1976.25.25030
- Charles F. Dunkl and Donald E. Ramirez, Krawtchouk polynomials and the symmetrization of hypergroups, SIAM J. Math. Anal. 5 (1974), 351–366. MR 346213, DOI 10.1137/0505039
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- V. A. Groza and I. I. Kachurik, Addition and multiplication theorems for Krawtchouk, Hahn and Racah $q$-polynomials, Dokl. Akad. Nauk Ukrain. SSR Ser. A 5 (1990), 3–6, 89 (Russian, with English summary). MR 1071402
- P.N. Hoefsmit, Representations of Hecke Algebras of Finite Groups with BN-pairs of Classical Type, thesis, Univ. British Columbia, Vancouver, 1974.
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- Michio Jimbo, A $q$-analogue of $U({\mathfrak {g}}{\mathfrak {l}}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252. MR 841713, DOI 10.1007/BF00400222
- Tom H. Koornwinder, Krawtchouk polynomials, a unification of two different group theoretic interpretations, SIAM J. Math. Anal. 13 (1982), no. 6, 1011–1023. MR 674770, DOI 10.1137/0513072
- Tom H. Koornwinder, Askey-Wilson polynomials as zonal spherical functions on the $\textrm {SU}(2)$ quantum group, SIAM J. Math. Anal. 24 (1993), no. 3, 795–813. MR 1215439, DOI 10.1137/0524049
- I. G. Macdonald, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174. MR 322069, DOI 10.1007/BF01431421
- I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), Exp. No. 797, 4, 189–207. Séminaire Bourbaki, Vol. 1994/95. MR 1423624
- Hideya Matsumoto, Analyse harmonique dans les systèmes de Tits bornologiques de type affine, Lecture Notes in Mathematics, Vol. 590, Springer-Verlag, Berlin-New York, 1977 (French). MR 0579177, DOI 10.1007/BFb0086707
- E. M. Opdam, A remark on the irreducible characters and fake degrees of finite real reflection groups, Invent. Math. 120 (1995), no. 3, 447–454. MR 1334480, DOI 10.1007/BF01241138
- Dennis Stanton, Some $q$-Krawtchouk polynomials on Chevalley groups, Amer. J. Math. 102 (1980), no. 4, 625–662. MR 584464, DOI 10.2307/2374091
- Dennis Stanton, Three addition theorems for some $q$-Krawtchouk polynomials, Geom. Dedicata 10 (1981), no. 1-4, 403–425. MR 608153, DOI 10.1007/BF01447435
- Dennis Stanton, Orthogonal polynomials and Chevalley groups, Special functions: group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, pp. 87–128. MR 774056
Bibliographic Information
- H. T. Koelink
- Affiliation: Department of Mathematics, Delft University of Technology, ITS-TWI-AW, P.O. Box 5031, 2600 GA Delft, the Netherlands
- Email: koelink@twi.tudelft.nl
- Received by editor(s): June 3, 1996
- Received by editor(s) in revised form: November 1, 1998
- Published electronically: April 21, 2000
- Additional Notes: Work done at the University of Amsterdam supported by the Netherlands Organization for Scientific Research (NWO) under project number 610.06.100
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4789-4813
- MSC (2000): Primary 33D80, 20C08, 43A90
- DOI: https://doi.org/10.1090/S0002-9947-00-02588-5
- MathSciNet review: 1707197