Definably simple groups in o-minimal structures
HTML articles powered by AMS MathViewer
- by Y. Peterzil, A. Pillay and S. Starchenko
- Trans. Amer. Math. Soc. 352 (2000), 4397-4419
- DOI: https://doi.org/10.1090/S0002-9947-00-02593-9
- Published electronically: February 24, 2000
- PDF | Request permission
Abstract:
Let $\mathbb {G}=\langle G, \cdot \rangle$ be a group definable in an o-minimal structure $\mathcal {M}$. A subset $H$ of $G$ is $\mathbb {G}$-definable if $H$ is definable in the structure $\langle G,\cdot \rangle$ (while definable means definable in the structure $\mathcal {M}$). Assume $\mathbb {G}$ has no $\mathbb {G}$-definable proper subgroup of finite index. In this paper we prove that if $\mathbb {G}$ has no nontrivial abelian normal subgroup, then $\mathbb {G}$ is the direct product of $\mathbb {G}$-definable subgroups $H_1,\ldots ,H_k$ such that each $H_i$ is definably isomorphic to a semialgebraic linear group over a definable real closed field. As a corollary we obtain an o-minimal analogue of Cherlin’s conjecture.References
- Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348, DOI 10.1017/CBO9780511525919
- Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497–540. MR 1404337, DOI 10.1215/S0012-7094-96-08416-1
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- James Loveys and Ya’acov Peterzil, Linear o-minimal structures, Israel J. Math. 81 (1993), no. 1-2, 1–30. MR 1231176, DOI 10.1007/BF02761295
- A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110, DOI 10.1007/978-3-642-74334-4
- Margarita Otero, Ya’acov Peterzil, and Anand Pillay, On groups and rings definable in o-minimal expansions of real closed fields, Bull. London Math. Soc. 28 (1996), no. 1, 7–14. MR 1356820, DOI 10.1112/blms/28.1.7
- Hartley Rogers Jr., Theory of recursive functions and effective computability, 2nd ed., MIT Press, Cambridge, MA, 1987. MR 886890
- Y. Peterzil, A. Pillay and S. Starchenko, Simple algebraic groups over real closed fields, Trans. Amer. Math. Soc. 352 (2000), 4421–4450.
- Y. Peterzil and S. Starchenko, A trichotomy theorem for o-minimal structures, Proc. London Math. Soc. 77 (1998), pp. 481–523.
- Anand Pillay, On groups and fields definable in $o$-minimal structures, J. Pure Appl. Algebra 53 (1988), no. 3, 239–255. MR 961362, DOI 10.1016/0022-4049(88)90125-9
- Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
- Adam W. Strzebonski, Euler characteristic in semialgebraic and other $\textrm {o}$-minimal groups, J. Pure Appl. Algebra 96 (1994), no. 2, 173–201. MR 1303545, DOI 10.1016/0022-4049(94)90127-9
Bibliographic Information
- Y. Peterzil
- Affiliation: Department of Mathematics and Computer Science, Haifa University, Haifa, Israel
- Email: kobi@mathcs2.haifa.ac.il
- A. Pillay
- Affiliation: Department of Mathemetics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, Illinois 61801
- MR Author ID: 139610
- Email: pillay@math.uiuc.edu
- S. Starchenko
- Affiliation: Department of Mathemetics, University of Notre Dame, Room 370, CCMB, Notre Dame, Indiana 46556
- MR Author ID: 237161
- Email: starchenko.1@nd.edu
- Received by editor(s): February 25, 1998
- Published electronically: February 24, 2000
- Additional Notes: The second and the third authors were partially supported by NSF
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4397-4419
- MSC (2000): Primary 03C64, 22E15, 20G20; Secondary 12J15
- DOI: https://doi.org/10.1090/S0002-9947-00-02593-9
- MathSciNet review: 1707202