The optimal differentiation basis and liftings of $L^{{\infty }}$

Authors:
Jürgen Bliedtner and Peter A. Loeb

Journal:
Trans. Amer. Math. Soc. **352** (2000), 4693-4710

MSC (1991):
Primary 28A15; Secondary 28A51, 26E35, 31C40, 54B99.

DOI:
https://doi.org/10.1090/S0002-9947-00-02615-5

Published electronically:
April 21, 2000

MathSciNet review:
1709771

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There is an optimal way to differentiate measures when given a consistent choice of where zero limits must occur. The appropriate differentiation basis is formed following the pattern of an earlier construction by the authors of an optimal approach system for producing boundary limits in potential theory. Applications include the existence of Lebesgue points, approximate continuity, and liftings for the space of bounded measurable functions – all aspects of the fact that for every point outside a set of measure $0$, a given integrable function has small variation on a set that is “big” near the point. This fact is illuminated here by the replacement of each measurable set with the collection of points where the set is “big”, using a classical base operator. Properties of such operators and of the topologies they generate, e.g., the density and fine topologies, are recalled and extended along the way. Topological considerations are simplified using an extension of base operators from algebras of sets on which they are initially defined to the full power set of the underlying space.

- J. Bliedtner and W. Hansen,
*Potential theory*, Universitext, Springer-Verlag, Berlin, 1986. An analytic and probabilistic approach to balayage. MR**850715** - Jürgen Bliedtner and Peter A. Loeb,
*A measure-theoretic boundary limit theorem*, Arch. Math. (Basel)**43**(1984), no. 4, 373–376. MR**802315**, DOI https://doi.org/10.1007/BF01196663 - J. Bliedtner and P. Loeb,
*A reduction technique for limit theorems in analysis and probability theory*, Ark. Mat.**30**(1992), no. 1, 25–43. MR**1171093**, DOI https://doi.org/10.1007/BF02384860 - Jürgen Bliedtner and Peter A. Loeb,
*Best filters for the general Fatou boundary limit theorem*, Proc. Amer. Math. Soc.**123**(1995), no. 2, 459–463. MR**1219720**, DOI https://doi.org/10.1090/S0002-9939-1995-1219720-2 - ____________, Sturdy harmonic functions and their integral representations, preprint.
- A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions (I), (II),
*Proc. Cambridge Phil. Soc.***41**(1945), 103-110,**42**(1946), 1-10,**43**(1947), 590. ; ; - Bernd Eifrig,
*Ein nicht-standard Beweis für die Existenz eines starken Lifting in ${\cal L}_{\infty }\langle 0,1] w\rangle $*, Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), North-Holland, Amsterdam, 1972, pp. 81–83. Studies in Logic and Foundations of Math., Vol. 69 (German). MR**0583871** - B. Eifrig,
*Ein Nicht-Standard-Bewels für die Existenz eines Liftings*, Measure theory (Proc. Conf., Oberwolfach, 1975) Springer, Berlin, 1976, pp. 133–135. Lecture Notes in Math., Vol. 541 (German). MR**0442679** - Gerald B. Folland,
*Real analysis*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. Modern techniques and their applications; A Wiley-Interscience Publication. MR**767633** - Bent Fuglede,
*Remarks on fine continuity and the base operation in potential theory*, Math. Ann.**210**(1974), 207–212. MR**357826**, DOI https://doi.org/10.1007/BF01350584 - Zoltán Füredi and Peter A. Loeb,
*On the best constant for the Besicovitch covering theorem*, Proc. Amer. Math. Soc.**121**(1994), no. 4, 1063–1073. MR**1249875**, DOI https://doi.org/10.1090/S0002-9939-1994-1249875-4 - Siegfried Graf and Heinrich von Weizsäcker,
*On the existence of lower densities in noncomplete measure spaces*, Measure theory (Proc. Conf., Oberwolfach, 1975) Springer, Berlin, 1976, pp. 155–158. Lecture Notes in Math., Vol. 541. MR**0450971** - Albert E. Hurd and Peter A. Loeb,
*An introduction to nonstandard real analysis*, Pure and Applied Mathematics, vol. 118, Academic Press, Inc., Orlando, FL, 1985. MR**806135** - A. Ionescu Tulcea and C. Ionescu Tulcea,
*Topics in the theory of lifting*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York Inc., New York, 1969. MR**0276438** - P. A. Loeb, Opening the covering theorems of Besicovitch and Morse,
*Mathematica Moravica*, Special Volume 1997, Proceedings of the 1995 International Workshop in Analysis and its Applications, 3–11. - Jaroslav Lukeš, Jan Malý, and Luděk Zajíček,
*Fine topology methods in real analysis and potential theory*, Lecture Notes in Mathematics, vol. 1189, Springer-Verlag, Berlin, 1986. MR**861411** - W. A. J. Luxemburg,
*A remark on the Cantor-Lebesgue lemma*, Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), North-Holland, Amsterdam, 1972, pp. 41–46. Studies in Logic and Found. Math., Vol. 69. MR**0470593** - Frank Wattenberg,
*Nonstandard measure theory: avoiding pathological sets*, Trans. Amer. Math. Soc.**250**(1979), 357–368. MR**530061**, DOI https://doi.org/10.1090/S0002-9947-1979-0530061-4

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
28A15,
28A51,
26E35,
31C40,
54B99.

Retrieve articles in all journals with MSC (1991): 28A15, 28A51, 26E35, 31C40, 54B99.

Additional Information

**Jürgen Bliedtner**

Affiliation:
Fachbereich Mathematik, Universität Frankfurt, Robert-Mayer-Str. 6-8, D-60054, Frankfurt/M, Germany

Email:
bliedtne@math.uni-frankfurt.de

**Peter A. Loeb**

Affiliation:
Department of Mathematics, University of Illinois, 1409 West Green St., Urbana, Illinois 61801

Email:
loeb@math.uiuc.edu

Keywords:
Differentiation basis,
Lebesgue point,
base operator,
density topology,
monad,
lifting.

Received by editor(s):
April 2, 1998

Received by editor(s) in revised form:
April 23, 1999

Published electronically:
April 21, 2000

Additional Notes:
The work of both authors was supported in part by NSF Grant DMS 96-22474.

Article copyright:
© Copyright 2000
American Mathematical Society