Center manifolds for smooth invariant manifolds
HTML articles powered by AMS MathViewer
- by Shui-Nee Chow, Weishi Liu and Yingfei Yi
- Trans. Amer. Math. Soc. 352 (2000), 5179-5211
- DOI: https://doi.org/10.1090/S0002-9947-00-02443-0
- Published electronically: June 27, 2000
- PDF | Request permission
Abstract:
We study dynamics of flows generated by smooth vector fields in ${\mathbb {R}}^n$ in the vicinity of an invariant and closed smooth manifold $Y$. By applying the Hadamard graph transform technique, we show that there exists an invariant manifold (called a center manifold of $Y$) based on the information of the linearization along $Y$, which contains every locally bounded solution and is persistent under small perturbations.References
- Valentine Afraimovich, Shui-Nee Chow, and Weishi Liu, Lorenz-type attractors from codimension one bifurcation, J. Dynam. Differential Equations 7 (1995), no. 2, 375–407. MR 1336467, DOI 10.1007/BF02219362
- Afraimovich, V., and Shilnikov, L. (1974). On Some Global Bifurcations Connected with the Disappearance of a Fixed Point of Saddle-node Type. Doklady Akad. Nauk. SSSR 219, 1281-1285 (in Russian). English translation in Sov. Math. Doklady.
- R. W. Dickey (ed.), Nonlinear elasticity, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Publication No. 31 of the Mathematics Research Center, University of Wisconsin, Madison, Wis. MR 0324993
- Peter W. Bates and Christopher K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 1–38. MR 1000974
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- I. U. Bronstein and A. Ya. Kopanskiĭ, Smooth invariant manifolds and normal forms, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. MR 1337026, DOI 10.1142/9789812798749
- Jack Carr, Applications of centre manifold theory, Applied Mathematical Sciences, vol. 35, Springer-Verlag, New York-Berlin, 1981. MR 635782, DOI 10.1007/978-1-4612-5929-9
- N. Chafee, Erratum: “A bifurcation problem for a functional differential equation of finitely retarded type” (J. Math. Anal. Appl. 35 (1971), 312–348), J. Math. Anal. Appl. 47 (1974), 671–672. MR 346272, DOI 10.1016/0022-247X(74)90016-X
- Xu-Yan Chen, Jack K. Hale, and Bin Tan, Invariant foliations for $C^1$ semigroups in Banach spaces, J. Differential Equations 139 (1997), no. 2, 283–318. MR 1472350, DOI 10.1006/jdeq.1997.3255
- A. Chenciner and G. Iooss, Bifurcations de tores invariants, Arch. Rational Mech. Anal. 69 (1979), no. 2, 109–198 (French). MR 521266, DOI 10.1007/BF00281175
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633, DOI 10.1007/978-1-4613-8159-4
- Shui-Nee Chow, Cheng Zhi Li, and Duo Wang, Normal forms and bifurcation of planar vector fields, Cambridge University Press, Cambridge, 1994. MR 1290117, DOI 10.1017/CBO9780511665639
- Shui-Nee Chow and Kening Lu, $C^k$ centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 303–320. MR 943805, DOI 10.1017/S0308210500014682
- Shui-Nee Chow and Kening Lu, Invariant manifolds and foliations for quasiperiodic systems, J. Differential Equations 117 (1995), no. 1, 1–27. MR 1320181, DOI 10.1006/jdeq.1995.1046
- Shui-Nee Chow and Yingfei Yi, Center manifold and stability for skew-product flows, J. Dynam. Differential Equations 6 (1994), no. 4, 543–582. MR 1303274, DOI 10.1007/BF02218847
- Stephen P. Diliberto, Perturbation theorems for periodic surfaces. I. Definitions and main theorems, Rend. Circ. Mat. Palermo (2) 9 (1960), 265–299. MR 142852, DOI 10.1007/BF02851248
- F. Dumortier, R. Roussarie, J. Sotomayor, and H. Żołądek, Bifurcations of planar vector fields, Lecture Notes in Mathematics, vol. 1480, Springer-Verlag, Berlin, 1991. Nilpotent singularities and Abelian integrals. MR 1166189, DOI 10.1007/BFb0098353
- Neil Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971/72), 193–226. MR 287106, DOI 10.1512/iumj.1971.21.21017
- Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), no. 1, 53–98. MR 524817, DOI 10.1016/0022-0396(79)90152-9
- Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI 10.1016/0022-0396(88)90110-6
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- Hadamard, J. (1901). Sur Líteration et les solutions asymptotiques des equations differentielles. Bull. Soc. Math. France 29, 224-228.
- Jack K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. (2) 73 (1961), 496–531. MR 123786, DOI 10.2307/1970314
- Jack K. Hale, Ordinary differential equations, Pure and Applied Mathematics, Vol. XXI, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1969. MR 0419901
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244, DOI 10.1007/BFb0089647
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- Ale Jan Homburg, Global aspects of homoclinic bifurcations of vector fields, Mem. Amer. Math. Soc. 121 (1996), no. 578, viii+128. MR 1327210, DOI 10.1090/memo/0578
- Russell A. Johnson, Concerning a theorem of Sell, J. Differential Equations 30 (1978), no. 3, 324–339. MR 521857, DOI 10.1016/0022-0396(78)90004-9
- C. K. R. T. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations 108 (1994), no. 1, 64–88. MR 1268351, DOI 10.1006/jdeq.1994.1025
- Al Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations 3 (1967), 546–570. MR 221044, DOI 10.1016/0022-0396(67)90016-2
- J. Kurzweil, Invariant manifolds of differential systems, Proceedings of the Fourth Conference on Nonlinear Oscillations (Prague, 1967), Academia, Prague, 1968, pp. 41–49. MR 0344603
- Y. Li, David W. McLaughlin, Jalal Shatah, and S. Wiggins, Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math. 49 (1996), no. 11, 1175–1255. MR 1406663, DOI 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.3.CO;2-B
- Lyapunov, A.M. (1947). Problème géneral de la stabilité du mouvement. Annals Math. Studies 17, Princeton, N.J. (originally published in Russian, 1892).
- Ricardo Mañé, Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc. 246 (1978), 261–283. MR 515539, DOI 10.1090/S0002-9947-1978-0515539-0
- Alexander Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci. 10 (1988), no. 1, 51–66. MR 929221, DOI 10.1002/mma.1670100105
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Kenneth Palmer, On the stability of the center manifold, Z. Angew. Math. Phys. 38 (1987), no. 2, 273–278 (English, with German summary). MR 885690, DOI 10.1007/BF00945412
- Perron, O. (1928). Über stabilität und asymptotisches verhalten der integrale von differentialgleichungssystemen. Math. Z. 29, 129-160.
- V. A. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1297–1324 (Russian). MR 0190449
- Pliss, V.A. and Sell, G. (1996). Approximation dynamics and the stability of invariant sets. IMA Preprint Series #1393.
- Krzysztof P. Rybakowski, An abstract approach to smoothness of invariant manifolds, Appl. Anal. 49 (1993), no. 1-2, 119–150. MR 1279237, DOI 10.1080/00036819308840170
- Robert J. Sacker, A perturbation theorem for invariant Riemannian manifolds, Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965) Academic Press, New York, 1967, pp. 43–54. MR 0218700
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI 10.1016/0022-0396(78)90057-8
- Kunimochi Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds, J. Differential Equations 107 (1994), no. 2, 259–279. MR 1264522, DOI 10.1006/jdeq.1994.1012
- Sandstede, B. (1993). Verzweigungstheorie homokliner verdopplungen. Report No. 7, Institut für Angewandte Analysis und Stochastik, Germany.
- James F. Selgrade, Isolated invariant sets for flows on vector bundles, Trans. Amer. Math. Soc. 203 (1975), 359–390. MR 368080, DOI 10.1090/S0002-9947-1975-0368080-X
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Jan Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc. 289 (1985), no. 2, 431–469. MR 783998, DOI 10.1090/S0002-9947-1985-0783998-8
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Julian Bonder, Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen, Z. Angew. Math. Mech. 19 (1939), 251–252 (German). MR 42, DOI 10.1002/zamm.19390190409
- Vanderbauwhede, A. (1989). Center manifolds, normal forms and elementary bifurcations. Dyn. Reported, 2, 89-169.
- A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynamics reported: expositions in dynamical systems, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, 1992, pp. 125–163. MR 1153030
- A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces, J. Funct. Anal. 72 (1987), no. 2, 209–224. MR 886811, DOI 10.1016/0022-1236(87)90086-3
- Whitney, H. (1936). Differential manifolds. Ann. Math., (2)37, 645-680.
- Stephen Wiggins, Normally hyperbolic invariant manifolds in dynamical systems, Applied Mathematical Sciences, vol. 105, Springer-Verlag, New York, 1994. With the assistance of György Haller and Igor Mezić. MR 1278264, DOI 10.1007/978-1-4612-4312-0
- Yingfei Yi, A generalized integral manifold theorem, J. Differential Equations 102 (1993), no. 1, 153–187. MR 1209981, DOI 10.1006/jdeq.1993.1026
Bibliographic Information
- Shui-Nee Chow
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0190; Department of Mathematics, National University of Singapore, Singapore 119262
- Email: chow@math.gatech.edu
- Weishi Liu
- Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211
- Address at time of publication: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
- Email: wliu@math.ukans.edu
- Yingfei Yi
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0190
- MR Author ID: 334485
- Email: yi@math.gatech.edu
- Received by editor(s): June 24, 1996
- Received by editor(s) in revised form: March 20, 1998
- Published electronically: June 27, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5179-5211
- MSC (1991): Primary 34C30, 34C35, 34D35
- DOI: https://doi.org/10.1090/S0002-9947-00-02443-0
- MathSciNet review: 1650077