Cotorsion theories and splitters
Authors:
Rüdiger Göbel and Saharon Shelah
Journal:
Trans. Amer. Math. Soc. 352 (2000), 5357-5379
MSC (2000):
Primary 13D30, 18E40, 18G05, 20K20, 20K35, 20K40; Secondary 03C60, 18G25, 20K35, 20K40, 20K30, 13C10
DOI:
https://doi.org/10.1090/S0002-9947-00-02475-2
Published electronically:
June 13, 2000
MathSciNet review:
1661246
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $R$ be a subring of the rationals. We want to investigate self splitting $R$-modules $G$ (that is $\operatorname {Ext}_R(G,G) = 0)$. Following Schultz, we call such modules splitters. Free modules and torsion-free cotorsion modules are classical examples of splitters. Are there others? Answering an open problem posed by Schultz, we will show that there are more splitters, in fact we are able to prescribe their endomorphism $R$-algebras with a free $R$-module structure. As a by-product we are able to solve a problem of Salce, showing that all rational cotorsion theories have enough injectives and enough projectives. This is also basic for answering the flat-cover-conjecture.
- Thomas Becker, László Fuchs, and Saharon Shelah, Whitehead modules over domains, Forum Math. 1 (1989), no. 1, 53–68. MR 978975, DOI https://doi.org/10.1515/form.1989.1.53
- A. L. S. Corner and Rüdiger Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), no. 3, 447–479. MR 779399, DOI https://doi.org/10.1112/plms/s3-50.3.447
- Yoshiomi Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281–285. MR 209260
- Paul C. Eklof and Alan H. Mekler, Almost free modules, North-Holland Mathematical Library, vol. 46, North-Holland Publishing Co., Amsterdam, 1990. Set-theoretic methods. MR 1055083
- Berthold Franzen and Rüdiger Göbel, Prescribing endomorphism algebras. The cotorsion-free case, Rend. Sem. Mat. Univ. Padova 80 (1988), 215–241 (1989). MR 988123
- L. Fuchs, Infinite abelian groups - Volume 1,2, Academic Press, New York (1970, 1972) ;
- Phillip Griffith, A solution to the splitting mixed group problem of Baer, Trans. Amer. Math. Soc. 139 (1969), 261–269. MR 238957, DOI https://doi.org/10.1090/S0002-9947-1969-0238957-1
- Rüdiger Göbel, Abelian groups with small cotorsion images, J. Austral. Math. Soc. Ser. A 50 (1991), no. 2, 243–247. MR 1094921
- Rüdiger Göbel, New aspects for two classical theorems on torsion splitting, Comm. Algebra 15 (1987), no. 12, 2473–2495. MR 917750, DOI https://doi.org/10.1080/00927878708823548
- Rüdiger Göbel and Rainer Prelle, Solution of two problems on cotorsion abelian groups, Arch. Math. (Basel) 31 (1978/79), no. 5, 423–431. MR 526605, DOI https://doi.org/10.1007/BF01226469
- R. Göbel, S. Shelah, Almost free splitters, Colloq. Math. 81 (1999), 193–221.
- R. Göbel, J. Trlifaj, Cotilting and a hierarchy of almost cotorsion groups, to appear in Proc. Amer. Math. Soc.
- Jutta Hausen, Automorphismengesättigte Klassen abz̈ahlbarer abelschen Gruppen, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 147–181 (German). MR 0244376
- Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR 506523
- Otto Kerner, Elementary stones, Comm. Algebra 22 (1994), no. 5, 1797–1806. MR 1264742, DOI https://doi.org/10.1080/00927879408824936
- M. Prest, Model theory and modules, London Math. Soc. L.N. 130 Cambridge University Press 1988.
- Claus Michael Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Abelian group theory and related topics (Oberwolfach, 1993) Contemp. Math., vol. 171, Amer. Math. Soc., Providence, RI, 1994, pp. 339–352. MR 1293154, DOI https://doi.org/10.1090/conm/171/01786
- Claus Michael Ringel, Bricks in hereditary length categories, Results Math. 6 (1983), no. 1, 64–70. MR 714659, DOI https://doi.org/10.1007/BF03323325
- P. Rothmaler, Purity in model theory, pp. 445 – 469 in Advances in Algebra and Model Theory, Series Algebra, Logic and Applications, Vol. 9, Gordon and Breach, Amsterdam 1997.
- Helices and vector bundles, London Mathematical Society Lecture Note Series, vol. 148, Cambridge University Press, Cambridge, 1990. Seminaire Rudakov; Translated from the Russian by A. D. King, P. Kobak and A. Maciocia. MR 1074776
- Luigi Salce, Cotorsion theories for abelian groups, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977) Academic Press, London-New York, 1979, pp. 11–32. MR 565595
- P. Schultz, Self-splitting groups, Preprint series of the University of Western Australia at Perth (1980).
- Saharon Shelah, A combinatorial theorem and endomorphism rings of abelian groups. II, Abelian groups and modules (Udine, 1984) CISM Courses and Lect., vol. 287, Springer, Vienna, 1984, pp. 37–86. MR 789808, DOI https://doi.org/10.1007/978-3-7091-2814-5_3
- Luise Unger, Schur modules over wild, finite-dimensional path algebras with three simple modules, J. Pure Appl. Algebra 64 (1990), no. 2, 205–222. MR 1055030, DOI https://doi.org/10.1016/0022-4049%2890%2990157-D
- Takayoshi Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106–114. MR 931903, DOI https://doi.org/10.1016/0021-8693%2888%2990215-3
- R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719. MR 242885
- Martin Ziegler, Model theory of modules, Ann. Pure Appl. Logic 26 (1984), no. 2, 149–213. MR 739577, DOI https://doi.org/10.1016/0168-0072%2884%2990014-9
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13D30, 18E40, 18G05, 20K20, 20K35, 20K40, 03C60, 18G25, 20K35, 20K40, 20K30, 13C10
Retrieve articles in all journals with MSC (2000): 13D30, 18E40, 18G05, 20K20, 20K35, 20K40, 03C60, 18G25, 20K35, 20K40, 20K30, 13C10
Additional Information
Rüdiger Göbel
Affiliation:
Fachbereich 6, Mathematik und Informatik, Universität Essen, 45117 Essen, Germany
Email:
R.Goebel@Uni-Essen.De
Saharon Shelah
Affiliation:
Department of Mathematics, Hebrew University, Jerusalem, Israel, and Rutgers University, New Brunswick, New Jersey
MR Author ID:
160185
ORCID:
0000-0003-0462-3152
Email:
Shelah@math.huji.ae.il
Keywords:
Cotorsion theories,
completions,
self-splitting modules,
enough projectives,
realizing rings as endomorphism rings of self-splitting modules. This paper is number GbSh 647 in Shelah’s list of publications
Received by editor(s):
February 23, 1998
Received by editor(s) in revised form:
June 1, 1998, and November 18, 1998
Published electronically:
June 13, 2000
Additional Notes:
This work is supported by the project No. G-0294-081.06/93 of the German-Israeli Foundation for Scientific Research and Development
Article copyright:
© Copyright 2000
American Mathematical Society