The Jantzen sum formula for cyclotomic $q$–Schur algebras
Authors:
Gordon James and Andrew Mathas
Journal:
Trans. Amer. Math. Soc. 352 (2000), 5381-5404
MSC (2000):
Primary 16G99; Secondary 20C20, 20G05
DOI:
https://doi.org/10.1090/S0002-9947-00-02492-2
Published electronically:
June 14, 2000
MathSciNet review:
1665333
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The cyclotomic $q$-Schur algebra was introduced by Dipper, James and Mathas, in order to provide a new tool for studying the Ariki-Koike algebra. We here prove an analogue of Jantzen’s sum formula for the cyclotomic $q$-Schur algebra. Among the applications is a criterion for certain Specht modules of the Ariki-Koike algebras to be irreducible.
- H. Andersen, P. Polo, and K. Wen, Representations of quantum algebras, Invent. Math., 104 (1991), 1–59. ;
- Susumu Ariki, On the semi-simplicity of the Hecke algebra of $({\bf Z}/r{\bf Z})\wr {\mathfrak S}_n$, J. Algebra 169 (1994), no. 1, 216–225. MR 1296590, DOI https://doi.org/10.1006/jabr.1994.1280
- Susumu Ariki and Kazuhiko Koike, A Hecke algebra of $({\bf Z}/r{\bf Z})\wr {\mathfrak S}_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no. 2, 216–243. MR 1279219, DOI https://doi.org/10.1006/aima.1994.1057
- Richard Dipper and Gordon James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), no. 1, 57–82. MR 872250, DOI https://doi.org/10.1112/plms/s3-54.1.57
- Richard Dipper and Gordon James, The $q$-Schur algebra, Proc. London Math. Soc. (3) 59 (1989), no. 1, 23–50. MR 997250, DOI https://doi.org/10.1112/plms/s3-59.1.23
- R. Dipper, G. James, and A. Mathas, Cyclotomic $q$–Schur algebras, Math. Z., 229 (1998), 385–416.
- Richard Dipper, Gordon James, and Eugene Murphy, Gram determinants of type $B_n$, J. Algebra 189 (1997), no. 2, 481–505. MR 1438185, DOI https://doi.org/10.1006/jabr.1996.6841
- J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123 (1996), no. 1, 1–34. MR 1376244, DOI https://doi.org/10.1007/BF01232365
- James A. Green, Polynomial representations of ${\rm GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- G. D. James and A. Mathas, The irreducible Specht modules in characteristic $2$, Bull. London Math. Soc. 31 (1999), 457–462.
- Gordon James and Andrew Mathas, A $q$-analogue of the Jantzen-Schaper theorem, Proc. London Math. Soc. (3) 74 (1997), no. 2, 241–274. MR 1425323, DOI https://doi.org/10.1112/S0024611597000099
- Jens C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), no. 1, 53–65. MR 439902, DOI https://doi.org/10.1007/BF01391218
- A. Mathas, Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Notes, 15, A.M.S., Providence, R.I., 1999.
- G. E. Murphy, A new construction of Young’s seminormal representation of the symmetric groups, J. Algebra 69 (1981), no. 2, 287–297. MR 617079, DOI https://doi.org/10.1016/0021-8693%2881%2990205-2
- G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke algebras, J. Algebra 152 (1992), no. 2, 492–513. MR 1194316, DOI https://doi.org/10.1016/0021-8693%2892%2990045-N
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G99, 20C20, 20G05
Retrieve articles in all journals with MSC (2000): 16G99, 20C20, 20G05
Additional Information
Gordon James
Affiliation:
Department of Mathematics, Imperial College, Queen’s Gate, London SW7 2BZ, United Kingdom
Email:
g.james@ic.ac.uk
Andrew Mathas
Affiliation:
School of Mathematics, University of Sydney, Sydney NSW 2006, Australia
MR Author ID:
349260
Email:
a.mathas@maths.usyd.edu.au
Received by editor(s):
March 18, 1998
Received by editor(s) in revised form:
December 1, 1998
Published electronically:
June 14, 2000
Additional Notes:
The authors would like to thank the Isaac Newton Institute for its hospitality. The second author also gratefully acknowledges the support of the Sonderforschungsbereich 343 at the Universität Bielefeld.
Article copyright:
© Copyright 2000
American Mathematical Society