Path stability and nonlinear weak ergodic theorems
HTML articles powered by AMS MathViewer
- by Yong-Zhuo Chen
- Trans. Amer. Math. Soc. 352 (2000), 5279-5292
- DOI: https://doi.org/10.1090/S0002-9947-00-02600-3
- Published electronically: July 12, 2000
- PDF | Request permission
Abstract:
Let $\{f_{n} \}$ be a sequence of nonlinear operators. We discuss the asymptotic properties of their inhomogeneous iterates $f_{n} \circ f_{n-1} \circ \cdots \circ f_{1}$ in metric spaces, then apply the results to the ordered Banach spaces through projective metrics. Theorems on path stability and nonlinear weak ergodicity are obtained in this paper.References
- D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464. MR 239559, DOI 10.1090/S0002-9939-1969-0239559-9
- T. A. Burton, Integral equations, implicit functions, and fixed points, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2383–2390. MR 1346965, DOI 10.1090/S0002-9939-96-03533-2
- Yong Zhuo Chen, Thompson’s metric and mixed monotone operators, J. Math. Anal. Appl. 177 (1993), no. 1, 31–37. MR 1224803, DOI 10.1006/jmaa.1993.1241
- Y.-Z. Chen, Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorems, Nonlinear Analysis 39(2000), 1–10.
- Da Jun Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Notes and Reports in Mathematics in Science and Engineering, vol. 5, Academic Press, Inc., Boston, MA, 1988. MR 959889
- Takao Fujimoto and Ulrich Krause, Asymptotic properties for inhomogeneous iterations of nonlinear operators, SIAM J. Math. Anal. 19 (1988), no. 4, 841–853. MR 946646, DOI 10.1137/0519058
- Takao Fujimoto and Ulrich Krause, Stable inhomogeneous iterations of nonlinear positive operators on Banach spaces, SIAM J. Math. Anal. 25 (1994), no. 4, 1195–1202. MR 1278900, DOI 10.1137/S0036141091221651
- Hisashi Inaba, Weak ergodicity of population evolution processes, Math. Biosci. 96 (1989), no. 2, 195–219. MR 1015666, DOI 10.1016/0025-5564(89)90059-X
- Jacek R. Jachymski, An extension of A. Ostrowski’s theorem on the round-off stability of iterations, Aequationes Math. 53 (1997), no. 3, 242–253. MR 1444177, DOI 10.1007/BF02215974
- James P. Keener, The Perron-Frobenius theorem and the ranking of football teams, SIAM Rev. 35 (1993), no. 1, 80–93. MR 1207798, DOI 10.1137/1035004
- M. A. Krasnosel′skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 263, Springer-Verlag, Berlin, 1984. Translated from the Russian by Christian C. Fenske. MR 736839, DOI 10.1007/978-3-642-69409-7
- U. Krause, Path stability of prices in a nonlinear Leontief model, Ann. Oper. Res. 37(1992), 141-148.
- U. Krause, Positive nonlinear systems: some results and applications, Proceedings of the First World Congress of Nonlinear Analysts 1992, W. de Gruyter, Berlin, 1996.
- Roger D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988), no. 391, iv+137. MR 961211, DOI 10.1090/memo/0391
- Roger D. Nussbaum, Some nonlinear weak ergodic theorems, SIAM J. Math. Anal. 21 (1990), no. 2, 436–460. MR 1038901, DOI 10.1137/0521024
- E. Seneta, Nonnegative matrices and Markov chains, 2nd ed., Springer Series in Statistics, Springer-Verlag, New York, 1981. MR 719544, DOI 10.1007/0-387-32792-4
- A. C. Thompson, On certain contraction mappings in a partially ordered vector space. , Proc. Amer. Math. Soc. 14 (1963), 438–443. MR 0149237, DOI 10.1090/S0002-9939-1963-0149237-7
Bibliographic Information
- Yong-Zhuo Chen
- Affiliation: Division of Natural Sciences, University of Pittsburgh at Bradford, Bradford, Pennsylvania 16701
- Email: yong@imap.pitt.edu
- Received by editor(s): June 30, 1998
- Received by editor(s) in revised form: June 1, 1999
- Published electronically: July 12, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5279-5292
- MSC (2000): Primary 47H07, 47H09; Secondary 47H10
- DOI: https://doi.org/10.1090/S0002-9947-00-02600-3
- MathSciNet review: 1707493