## A classification of one dimensional almost periodic tilings arising from the projection method

HTML articles powered by AMS MathViewer

- by James A. Mingo
- Trans. Amer. Math. Soc.
**352**(2000), 5263-5277 - DOI: https://doi.org/10.1090/S0002-9947-00-02620-9
- Published electronically: July 18, 2000

## Abstract:

For each irrational number $\alpha$, with continued fraction expansion $[0; a_1, a_2,a_3, \dots ]$, we classify, up to translation, the one dimensional almost periodic tilings which can be constructed by the projection method starting with a line of slope $\alpha$. The invariant is a sequence of integers in the space $X_\alpha = \{(x_i)_{i=1}^\infty \mid x_i \in \{0,1,2, \dots ,a_i\}$ and $x_{i+1} = 0$ whenever $x_i = a_i\}$ modulo the equivalence relation generated by tail equivalence and $(a_1, 0, a_3, 0, \dots ) \sim (0, a_2, 0, a_4, \dots ) \sim (a_1 -1, a_2 - 1, a_3 - 1, \dots )$. Each tile in a tiling $\textsf {T}$, of slope $\alpha$, is coded by an integer $0 \leq x \leq [\alpha ]$. Using a composition operation, we produce a sequence of tilings $\textsf {T}_1 = \textsf {T}{}, \textsf {T}_2, \textsf {T}_3, \dots$. Each tile in $\textsf {T}_i$ gets absorbed into a tile in $\textsf {T}_{i+1}$. A choice of a starting tile in $\textsf {T}_1$ will thus produce a sequence in $X_\alpha$. This is the invariant.## References

- Jared E. Anderson and Ian F. Putnam,
*Topological invariants for substitution tilings and their associated $C^*$-algebras*, Ergodic Theory Dynam. Systems**18**(1998), no. 3, 509–537. MR**1631708**, DOI 10.1017/S0143385798100457 - Jean Bernoulli (III), (1744-1807),
*Recueil pour les Astromomes*, tome 1, Berlin, chez l’auteur, (1771). - Tom C. Brown,
*Descriptions of the characteristic sequence of an irrational*, Canad. Math. Bull.**36**(1993), no. 1, 15–21. MR**1205889**, DOI 10.4153/CMB-1993-003-6 - N. G. de Bruijn,
*Sequences of zeros and ones generated by special production rules*, Nederl. Akad. Wetensch. Indag. Math.**43**(1981), no. 1, 27–37. MR**609464**, DOI 10.1016/1385-7258(81)90015-9 - N. G. de Bruijn,
*Updown generation of Beatty sequences*, Nederl. Akad. Wetensch. Indag. Math.**51**(1989), no. 4, 385–407. MR**1041493**, DOI 10.1016/1385-7258(89)90003-6 - E. B. Christoffel, Observatio Arithmetica,
*Annali di Mathematica*, (2)**6**(1875) 148-152. - Alain Connes,
*Noncommutative geometry*, Academic Press, Inc., San Diego, CA, 1994. MR**1303779** - Branko Grünbaum and G. C. Shephard,
*Tilings and patterns*, A Series of Books in the Mathematical Sciences, W. H. Freeman and Company, New York, 1989. An introduction. MR**992195** - W. F. Lunnon and P. A. B. Pleasants,
*Characterization of two-distance sequences*, J. Austral. Math. Soc. Ser. A**53**(1992), no. 2, 198–218. MR**1175712**, DOI 10.1017/S1446788700035795 - James A. Mingo,
*$C^*$-algebras associated with one-dimensional almost periodic tilings*, Comm. Math. Phys.**183**(1997), no. 2, 307–337. MR**1461961**, DOI 10.1007/BF02506409 - T. Venkatarayudu,
*The $7$-$15$ problem*, Proc. Indian Acad. Sci., Sect. A.**9**(1939), 531. MR**0000001**, DOI 10.1090/gsm/058 - W. Parry,
*On the $\beta$-expansions of real numbers*, Acta Math. Acad. Sci. Hungar.**11**(1960), 401–416 (English, with Russian summary). MR**142719**, DOI 10.1007/BF02020954 - A. Rényi,
*Representations for real numbers and their ergodic properties*, Acta Math. Acad. Sci. Hungar.**8**(1957), 477–493. MR**97374**, DOI 10.1007/BF02020331 - E. Arthur Robinson Jr.,
*The dynamical properties of Penrose tilings*, Trans. Amer. Math. Soc.**348**(1996), no. 11, 4447–4464. MR**1355301**, DOI 10.1090/S0002-9947-96-01640-6 - Marjorie Senechal,
*Quasicrystals and geometry*, Cambridge University Press, Cambridge, 1995. MR**1340198** - Caroline Series,
*The geometry of Markoff numbers*, Math. Intelligencer**7**(1985), no. 3, 20–29. MR**795536**, DOI 10.1007/BF03025802 - H. J. S. Smith, A Note on Continued Fractions,
*Messenger of Math.*, (2)**6**(1876) 1-14.

## Bibliographic Information

**James A. Mingo**- Affiliation: Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Email: mingoj@mast.queensu.ca
- Received by editor(s): August 4, 1998
- Received by editor(s) in revised form: May 1, 1999
- Published electronically: July 18, 2000
- Additional Notes: Research supported by the Natural Sciences and Engineering Research Council of Canada and The Fields Institute for Research in the Mathematical Sciences
- © Copyright 2000 by the author
- Journal: Trans. Amer. Math. Soc.
**352**(2000), 5263-5277 - MSC (1991): Primary 05B45, 52C22, 46L89
- DOI: https://doi.org/10.1090/S0002-9947-00-02620-9
- MathSciNet review: 1709776