Euclidean weights of codes from elliptic curves over rings
HTML articles powered by AMS MathViewer
- by José Felipe Voloch and Judy L. Walker
- Trans. Amer. Math. Soc. 352 (2000), 5063-5076
- DOI: https://doi.org/10.1090/S0002-9947-00-02637-4
- Published electronically: June 28, 2000
- PDF | Request permission
Abstract:
We construct certain error-correcting codes over finite rings and estimate their parameters. For this purpose, we need to develop some tools, notably an estimate for certain exponential sums and some results on canonical lifts of elliptic curves. These results may be of independent interest.References
- A. E. Brouwer and Tom Verhoeff, An updated table of minimum-distance bounds for binary linear codes, IEEE Trans. Inform. Theory 39 (1993), no. 2, 662–676. MR 1224355, DOI 10.1109/18.212301
- Alexandru Buium, An approximation property for Teichmüller points, Math. Res. Lett. 3 (1996), no. 4, 453–457. MR 1406010, DOI 10.4310/MRL.1996.v3.n4.a3
- Alexandru Buium, Geometry of $p$-jets, Duke Math. J. 82 (1996), no. 2, 349–367. MR 1387233, DOI 10.1215/S0012-7094-96-08216-2
- P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, vol. 569, Springer-Verlag, Berlin, 1977 (French). Séminaire de géométrie algébrique du Bois-Marie SGA $4\frac {1}{2}$. MR 463174, DOI 10.1007/BFb0091526
- V. D. Goppa, Codes that are associated with divisors, Problemy Peredači Informacii 13 (1977), no. 1, 33–39 (Russian). MR 0497293
- A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The $\textbf {Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046, DOI 10.1109/18.312154
- P. Deligne, Cristaux ordinaires et coordonnées canoniques, Algebraic surfaces (Orsay, 1976–78) Lecture Notes in Math., vol. 868, Springer, Berlin-New York, 1981, pp. 80–137 (French). With the collaboration of L. Illusie; With an appendix by Nicholas M. Katz. MR 638599
- P. Vijay Kumar, Tor Helleseth, and A. R. Calderbank, An upper bound for Weil exponential sums over Galois rings and applications, IEEE Trans. Inform. Theory 41 (1995), no. 2, 456–468. MR 1326293, DOI 10.1109/18.370147
- W-C. W. Li, Character sums over $p$-adic fields, J. Number Theory 74 (1999), 181–229.
- S. Litsyn, E. M Rains, and N. J. A. Sloane, Table of nonlinear binary codes, available on the World Wide Web at http://www.research.att.com/$\sim$njas/codes/And/.
- J. Lubin, J-P. Serre, and J. Tate, Elliptic curves and formal groups, Proc. of the Woods Hole summer institute in algebraic geometry, 1964.
- B. Mazur, Frobenius and the Hodge filtration (estimates), Ann. of Math. (2) 98 (1973), 58–95. MR 321932, DOI 10.2307/1970906
- H. L. Schmid, Zur arithmetik der zyklischen $p$-Körper, Crelles J. 176 (1936), 161–167.
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- Henning Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993. MR 1251961
- M. A. Tsfasman and S. G. Vlăduţ, Algebraic-geometric codes, Mathematics and its Applications (Soviet Series), vol. 58, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the Russian by the authors. MR 1186841, DOI 10.1007/978-94-011-3810-9
- M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink, Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Math. Nachr. 109 (1982), 21–28. MR 705893, DOI 10.1002/mana.19821090103
- J.-F. Voloch and J. L. Walker, Lee weights of $\mathsf {Z}/4 \mathsf {Z}$-codes from elliptic curves, to appear in Codes, Curves, and Signals: Common Threads in Communications.
- —, Codes over rings from curves of higher genus, IEEE Trans. Inform. Theory 45 (1999), 1768–1776.
- J. L. Walker, Algebraic geometric codes over rings, to appear in the Journal of Pure and Applied Algebra 144 (1999), 91–110.
- Judy L. Walker, The Nordstrom-Robinson code is algebraic-geometric, IEEE Trans. Inform. Theory 43 (1997), no. 5, 1588–1593. MR 1476789, DOI 10.1109/18.623154
Bibliographic Information
- José Felipe Voloch
- Affiliation: Department of Mathematics, University of Texas, Austin, Texas 78712
- MR Author ID: 179265
- ORCID: 0000-0003-1669-9306
- Email: voloch@math.utexas.edu
- Judy L. Walker
- Affiliation: Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323
- Email: jwalker@math.unl.edu
- Received by editor(s): October 29, 1998
- Received by editor(s) in revised form: September 16, 1999
- Published electronically: June 28, 2000
- Additional Notes: The first author was supported in part by NSA Grant #MDA904-97-1-0037.
The second author was supported in part by NSF Grant #DMS-9709388. - © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5063-5076
- MSC (1991): Primary 94B27; Secondary 11T71, 11G07
- DOI: https://doi.org/10.1090/S0002-9947-00-02637-4
- MathSciNet review: 1778505