Hypercyclic operators that commute with the Bergman backward shift
HTML articles powered by AMS MathViewer
- by Paul S. Bourdon and Joel H. Shapiro
- Trans. Amer. Math. Soc. 352 (2000), 5293-5316
- DOI: https://doi.org/10.1090/S0002-9947-00-02648-9
- Published electronically: July 18, 2000
- PDF | Request permission
Abstract:
The backward shift $B$ on the Bergman space of the unit disc is known to be hypercyclic (meaning: it has a dense orbit). Here we ask: “Which operators that commute with $B$ inherit its hypercyclicity?” We show that the problem reduces to the study of operators of the form $\phi (B)$ where $\phi$ is a holomorphic self-map of the unit disc that multiplies the Dirichlet space into itself, and that the question of hypercyclicity for such an operator depends on how freely $\phi (z)$ is allowed to approach the unit circle as $|z|\to 1-$.References
- A. B. Aleksandrov, A. È. Džrbašjan, and V. P. Havin, On the Carleson formula for the Dirichlet integral of an analytic function, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 4 (1979), 8–14, 121 (Russian, with English summary). MR 564567
- Sheldon Axler and Allen L. Shields, Univalent multipliers of the Dirichlet space, Michigan Math. J. 32 (1985), no. 1, 65–80. MR 777302, DOI 10.1307/mmj/1029003133
- Steven R. Bell, The Cauchy transform, potential theory, and conformal mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1228442
- Steven R. Bell and Steven G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mountain J. Math. 17 (1987), no. 1, 23–40. MR 882882, DOI 10.1216/RMJ-1987-17-1-23
- P. S. Bourdon, J. A. Cima, and A. L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2183–2196. MR 1624085, DOI 10.1090/S0002-9947-99-02387-9
- Leon Brown and Allen L. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), no. 1, 269–303. MR 748841, DOI 10.1090/S0002-9947-1984-0748841-0
- Lennart Carleson, A representation formula for the Dirichlet integral, Math. Z. 73 (1960), 190–196. MR 112958, DOI 10.1007/BF01162477
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- W. George Cochran, Joel H. Shapiro, and David C. Ullrich, Random Dirichlet functions: multipliers and smoothness, Canad. J. Math. 45 (1993), no. 2, 255–268. MR 1208115, DOI 10.4153/CJM-1993-012-6
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- C. Kitai, Invariant closed sets for linear operators, Thesis, Univ. of Toronto, 1982.
- E. Flytzanis, Unimodular eigenvalues and linear chaos in Hilbert spaces, Geom. Funct. Anal. 5 (1995), no. 1, 1–13. MR 1312018, DOI 10.1007/BF01928214
- Lars Gȧrding and Lars Hörmander, Strongly subharmonic functions, Math. Scand. 15 (1964), 93–96. MR 179373, DOI 10.7146/math.scand.a-10732
- Robert M. Gethner and Joel H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281–288. MR 884467, DOI 10.1090/S0002-9939-1987-0884467-4
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952, DOI 10.1007/978-1-4684-9330-6
- Gerd Herzog and Christoph Schmoeger, On operators $T$ such that $f(T)$ is hypercyclic, Studia Math. 108 (1994), no. 3, 209–216. MR 1259277, DOI 10.4064/sm-108-3-209-216
- Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition, Dover Publications, Inc., New York, 1976. MR 0422992
- D. J. Newman and Harold S. Shapiro, The Taylor coefficients of inner functions, Michigan Math. J. 9 (1962), 249–255. MR 148874, DOI 10.1307/mmj/1028998724
- Clark Robinson, Dynamical systems, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. Stability, symbolic dynamics, and chaos. MR 1396532
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404. MR 881273, DOI 10.2307/1971314
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Joel H. Shapiro and Carl Sundberg, Isolation amongst the composition operators, Pacific J. Math. 145 (1990), no. 1, 117–152. MR 1066401, DOI 10.2140/pjm.1990.145.117
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
- David A. Stegenga, Bounded Toeplitz operators on $H^{1}$ and applications of the duality between $H^{1}$ and the functions of bounded mean oscillation, Amer. J. Math. 98 (1976), no. 3, 573–589. MR 420326, DOI 10.2307/2373807
- David A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139. MR 550655
- Gerald D. Taylor, Multipliers on $D_{\alpha }$, Trans. Amer. Math. Soc. 123 (1966), 229–240. MR 206696, DOI 10.1090/S0002-9947-1966-0206696-6
Bibliographic Information
- Paul S. Bourdon
- Affiliation: Department of Mathematics, Washington and Lee University, Lexington, Virginia 24450
- Email: pbourdon@wlu.edu
- Joel H. Shapiro
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027
- Email: shapiro@math.msu.edu
- Received by editor(s): January 28, 1999
- Received by editor(s) in revised form: September 13, 1999
- Published electronically: July 18, 2000
- Additional Notes: Both authors were supported in part by the National Science Foundation
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5293-5316
- MSC (2000): Primary 47B38
- DOI: https://doi.org/10.1090/S0002-9947-00-02648-9
- MathSciNet review: 1778507