Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology
HTML articles powered by AMS MathViewer
- by Luis A. Cordero, Marisa Fernández, Alfred Gray and Luis Ugarte
- Trans. Amer. Math. Soc. 352 (2000), 5405-5433
- DOI: https://doi.org/10.1090/S0002-9947-00-02486-7
- Published electronically: June 28, 2000
- PDF | Request permission
Abstract:
We consider a special class of compact complex nilmanifolds, which we call compact nilmanifolds with nilpotent complex structure. It is shown that if $\Gamma \backslash G$ is a compact nilmanifold with nilpotent complex structure, then the Dolbeault cohomology $H^{\ast ,\ast }_{\bar {\partial } }(\Gamma \backslash G)$ is canonically isomorphic to the $\bar {\partial }$–cohomology $H^{\ast ,\ast }_{\bar {\partial } }(\mathfrak {g}^{\mathbb {C} })$ of the bigraded complex $(\Lambda ^{\ast ,\ast } (\mathfrak {g} ^{\mathbb {C} })^{\ast }, \bar {\partial } )$ of complex valued left invariant differential forms on the nilpotent Lie group $G$.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Luis C. de Andrés, Marisa Fernández, Alfred Gray, and José J. Mencía, Compact manifolds with indefinite Kähler metrics, Proceedings of the Sixth International Colloquium on Differential Geometry (Santiago de Compostela, 1988) Cursos Congr. Univ. Santiago de Compostela, vol. 61, Univ. Santiago de Compostela, Santiago de Compostela, 1989, pp. 25–50. MR 1040834
- E. Abbena, S. Garbiero, and S. Salamon, Hermitian geometry on the Iwasawa manifold, Boll. Un. Mat. Ital. B (7) 11 (1997), no. 2, suppl., 231–249 (English, with Italian summary). MR 1456263
- Chal Benson and Carolyn S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513–518. MR 976592, DOI 10.1016/0040-9383(88)90029-8
- Luis A. Cordero, Holomorphic principal torus bundles, curvature and compact complex nilmanifolds, Proceedings of the Workshop on Curvature Geometry (Lancaster, 1989) ULDM Publ., Lancaster, 1989, pp. 107–149. MR 1089889
- Luis A. Cordero, M. Fernández, and A. Gray, Symplectic manifolds with no Kähler structure, Topology 25 (1986), no. 3, 375–380. MR 842431, DOI 10.1016/0040-9383(86)90050-9
- L.A. Cordero, M. Fernández, A. Gray, Compact symplectic manifolds not admitting positive definite Kähler metrics, to appear, Proc. Int. Conf. on Topology and its Appl., Baku 3–9 October 1987, U.R.S.S..
- Luis A. Cordero, Marisa Fernández, and Alfred Gray, The Frölicher spectral sequence and complex compact nilmanifolds, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 17, 753–756 (English, with French summary). MR 921144, DOI 10.1007/978-94-011-5276-1_{5}
- Luis A. Cordero, Marisa Fernández, and Alfred Gray, The Frölicher spectral sequence for compact nilmanifolds, Illinois J. Math. 35 (1991), no. 1, 56–67. MR 1076666
- L.A. Cordero, M. Fernández, A. Gray, The de Rham cohomology ring of a compact nilmanifold, preprint.
- Luis A. Cordero, Marisa Fernández, Luis Ugarte, and Alfred Gray, A general description of the terms in the Frölicher spectral sequence, Differential Geom. Appl. 7 (1997), no. 1, 75–84. MR 1441920, DOI 10.1016/S0926-2245(96)00038-1
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- Marisa Fernández and Alfred Gray, The Iwasawa manifold, Differential geometry, Peñíscola 1985, Lecture Notes in Math., vol. 1209, Springer, Berlin, 1986, pp. 157–159. MR 863753, DOI 10.1007/BFb0076628
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- A. P. Černjaev, Discovery of solutions of source-sink type for the potential of generalized Cauchy-Riemann systems of a certain type, Differentsial′nye Uravneniya 17 (1981), no. 8, 1511–1514, 1535 (Russian). MR 629453
- Keizo Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71. MR 946638, DOI 10.1090/S0002-9939-1989-0946638-X
- F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Die Grundlehren der mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. MR 0202713
- H. Davenport and P. Erdös, On sums of positive integral $k$th powers, Ann. of Math. (2) 40 (1939), 553–536. MR 27, DOI 10.2307/1968937
- K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. MR 187255, DOI 10.2307/2373157
- Julian Bonder, Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen, Z. Angew. Math. Mech. 19 (1939), 251–252 (German). MR 42, DOI 10.1002/zamm.19390190409
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- Shingo Murakami, Sur certains espaces fibrés principaux holomorphes dont le groupe est abélien connexe, Osaka Math. J. 13 (1961), 143–167 (French). MR 143228
- Iku Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geometry 10 (1975), 85–112. MR 393580
- Joseph Neisendorfer and Laurence Taylor, Dolbeault homotopy theory, Trans. Amer. Math. Soc. 245 (1978), 183–210. MR 511405, DOI 10.1090/S0002-9947-1978-0511405-5
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
- Yusuke Sakane, On compact complex parallelisable solvmanifolds, Osaka Math. J. 13 (1976), no. 1, 187–212. MR 422706
- W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467–468. MR 402764, DOI 10.1090/S0002-9939-1976-0402764-6
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308, DOI 10.1007/978-1-4612-1126-6
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
Bibliographic Information
- Luis A. Cordero
- Affiliation: Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain
- Email: cordero@zmat.usc.es
- Marisa Fernández
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
- Email: mtpferol@lg.ehu.es
- Alfred Gray
- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
- Email: gray@bianchi.umd.edu
- Luis Ugarte
- Affiliation: Departamento de Matemáticas (Geometría y Topología), Facultad de Ciencias, Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza, Spain
- MR Author ID: 614982
- Email: ugarte@posta.unizar.es
- Received by editor(s): March 29, 1998
- Received by editor(s) in revised form: December 20, 1998
- Published electronically: June 28, 2000
- Additional Notes: Partially supported by Xunta de Galicia (Spain), Research Project XUGA20701B93, U.P.V. Project 127.310–EA 191/94, DGICYT Projects PB94-0633-C02-01 and PB94-0633-C02-02, and by DGICYT Sabbatical Program 1995-0735.
The revised version was submitted just after the unexpected death of A. Gray in Bilbao (Spain) on October 27, 1998. - © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5405-5433
- MSC (2000): Primary 32L05, 55P62, 57T15; Secondary 53C56, 32Q99
- DOI: https://doi.org/10.1090/S0002-9947-00-02486-7
- MathSciNet review: 1665327