Intersection theory on non-commutative surfaces
HTML articles powered by AMS MathViewer
- by Peter Jørgensen
- Trans. Amer. Math. Soc. 352 (2000), 5817-5854
- DOI: https://doi.org/10.1090/S0002-9947-00-02565-4
- Published electronically: June 21, 2000
- PDF | Request permission
Abstract:
Consider a non-commutative algebraic surface, $X$, and an effective divisor $Y$ on $X$, as defined by Van den Bergh. We show that the Riemann-Roch theorem, the genus formula, and the self intersection formula from classical algebraic geometry generalize to this setting.
We also apply our theory to some special cases, including the blow up of $X$ in a point, and show that the self intersection of the exceptional divisor is $-1$. This is used to give an example of a non-commutative surface with a commutative $\mathbb {P}^1$ which cannot be blown down, because its self intersection is $+1$ rather than $-1$. We also get some results on Hilbert polynomials of modules on $X$.
References
- M. Artin, J. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 33–85. MR 1086882
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- I. Mori and S. P. Smith, Bézout’s theorem for quantum $\mathbb {P}^2$, preprint, 1997.
- I. Mori and S. P. Smith, The Grothendieck group of a quantum projective space bundle, preprint, 1998.
- S. P. Smith and J. J. Zhang, Curves on quasi-schemes, Algebras and Represent. Theory 1 (1998), 311–351.
- M. Van den Bergh, Blowing up of non-commutative smooth surfaces, to appear in Mem. Amer. Math. Soc.
- Martine Van Gastel and Michel Van den Bergh, Graded modules of Gelfand-Kirillov dimension one over three-dimensional Artin-Schelter regular algebras, J. Algebra 196 (1997), no. 1, 251–282. MR 1474172, DOI 10.1006/jabr.1997.7072
- Amnon Yekutieli and James J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125 (1997), no. 3, 697–707. MR 1372045, DOI 10.1090/S0002-9939-97-03782-9
Bibliographic Information
- Peter Jørgensen
- Affiliation: Matematisk Afdeling, Københavns Universitet, Universitetsparken 5, 2100 København Ø, DK-Danmark
- Email: popjoerg@math.ku.dk
- Received by editor(s): June 16, 1998
- Received by editor(s) in revised form: March 31, 1999
- Published electronically: June 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5817-5854
- MSC (2000): Primary 14A22, 16W50
- DOI: https://doi.org/10.1090/S0002-9947-00-02565-4
- MathSciNet review: 1695026