The quartile operator and pointwise convergence of Walsh series
HTML articles powered by AMS MathViewer
- by Christoph Thiele
- Trans. Amer. Math. Soc. 352 (2000), 5745-5766
- DOI: https://doi.org/10.1090/S0002-9947-00-02577-0
- Published electronically: August 3, 2000
- PDF | Request permission
Abstract:
The bilinear Hilbert transform is given by \[ H(f,g)(x):= p.v.\ \int f(x-t)g(x+t)\frac {dt}{t}. \] It satisfies estimates of the type \[ \|H(f,g)\|_r\le C(s,t)\|f\|_s \|g\|_t.\] In this paper we prove such estimates for a discrete model of the bilinear Hilbert transform involving the Walsh Fourier transform. We also reprove the well-known fact that the Walsh Fourier series of a function in $L^p[0,1]$, with $1<p$ converges pointwise almost everywhere. The purpose of this exposition is to clarify the connection between these two results and to present an easy approach to recent methods of time-frequency analysis.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275
- P. Billard, Sur la convergence presque partout des séries de Fourier-Walsh des fonctions de l’espace $L^{2}\,(0,\,1)$, Studia Math. 28 (1966/67), 363–388. MR 217510, DOI 10.4064/sm-28-3-363-388
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Charles Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), 551–571. MR 340926, DOI 10.2307/1970917
- Richard A. Hunt, Almost everywhere convergence of Walsh-Fourier series of $L^{2}$ functions, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 655–661. MR 0511000
- Svante Janson, On interpolation of multilinear operators, Function spaces and applications (Lund, 1986) Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 290–302. MR 942274, DOI 10.1007/BFb0078880
- Michael Lacey and Christoph Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2<p<\infty$, Ann. of Math. (2) 146 (1997), no. 3, 693–724. MR 1491450, DOI 10.2307/2952458
- M. Lacey and C. Thiele, Bounds for the bilinear Hilbert transform on $L^p$, Proc. Nat. Acad. Sci. 94 (1997), 33–35.
- R.E.A.C. Paley, A remarkable series of orthogonal functions (I), Proc. London Math. Soc. 34 (1932), 241–264.
- Per Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Mat. 7 (1969), 551–570. MR 241885, DOI 10.1007/BF02590894
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Christoph M. Thiele and Lars F. Villemoes, A fast algorithm for adapted time-frequency tilings, Appl. Comput. Harmon. Anal. 3 (1996), no. 2, 91–99. MR 1385046, DOI 10.1006/acha.1996.0009
- J. L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math. 45 (1923), 5–24.
Bibliographic Information
- Christoph Thiele
- Affiliation: Department of Mathematics, Yale University, New Haven, Connecticut 06511
- Address at time of publication: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- Email: thiele@math.ucla.edu
- Received by editor(s): September 25, 1997
- Published electronically: August 3, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5745-5766
- MSC (2000): Primary 42A50, 42A20, 42C10
- DOI: https://doi.org/10.1090/S0002-9947-00-02577-0
- MathSciNet review: 1695038