Quantum -space as a quotient of classical
-space
Authors:
K. R. Goodearl and E. S. Letzter
Journal:
Trans. Amer. Math. Soc. 352 (2000), 5855-5876
MSC (2000):
Primary 16D60, 16P40, 16S36, 16W35; Secondary 20G42, 81R50
DOI:
https://doi.org/10.1090/S0002-9947-00-02639-8
Published electronically:
August 8, 2000
MathSciNet review:
1781280
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The prime and primitive spectra of , the multiparameter quantized coordinate ring of affine
-space over an algebraically closed field
, are shown to be topological quotients of the corresponding classical spectra,
and
, provided the multiplicative group generated by the entries of
avoids
.
- 1. Gene Abrams and Jeremy Haefner, Primeness conditions for group graded rings, Ring theory (Granville, OH, 1992) World Sci. Publ., River Edge, NJ, 1993, pp. 1–19. MR 1344219
- 2. Michael Artin, William Schelter, and John Tate, Quantum deformations of 𝐺𝐿_{𝑛}, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879–895. MR 1127037, https://doi.org/10.1002/cpa.3160440804
- 3. K. A. Brown and K. R. Goodearl, Prime spectra of quantum semisimple groups, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2465–2502. MR 1348148, https://doi.org/10.1090/S0002-9947-96-01597-8
- 4. C. De Concini, V. G. Kac, and C. Procesi, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (1993), no. 2, 405–427. MR 1244875
- 5. Alfred Goldie and Gerhard Michler, Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974/75), 337–345. MR 357500, https://doi.org/10.1112/jlms/s2-9.2.337
- 6. K. R. Goodearl and E. S. Letzter, Prime and primitive spectra of multiparameter quantum affine spaces, Trends in ring theory (Miskolc, 1996) CMS Conf. Proc., vol. 22, Amer. Math. Soc., Providence, RI, 1998, pp. 39–58. MR 1491917
- 7. K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- 8. Timothy J. Hodges and Thierry Levasseur, Primitive ideals of 𝐶_{𝑞}[𝑆𝐿(3)], Comm. Math. Phys. 156 (1993), no. 3, 581–605. MR 1240587
- 9. Timothy J. Hodges and Thierry Levasseur, Primitive ideals of 𝐶_{𝑞}[𝑆𝐿(𝑛)], J. Algebra 168 (1994), no. 2, 455–468. MR 1292775, https://doi.org/10.1006/jabr.1994.1239
- 10. Hans Plesner Jakobsen, Tensoring with small quantized representations, J. Math. Phys. 38 (1997), no. 8, 4323–4335. MR 1459660, https://doi.org/10.1063/1.532096
- 11. Anthony Joseph, On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra 169 (1994), no. 2, 441–511. MR 1297159, https://doi.org/10.1006/jabr.1994.1294
- 12. Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966
- 13. J. C. McConnell and J. J. Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc. (2) 38 (1988), no. 1, 47–55. MR 949080, https://doi.org/10.1112/jlms/s2-38.1.47
- 14. D. G. Northcott, Affine sets and affine groups, London Mathematical Society Lecture Note Series, vol. 39, Cambridge University Press, Cambridge-New York, 1980. MR 569353
- 15. M. Vancliff, Primitive and Poisson spectra of twists of polynomial rings, Algebras and Representation Theory 2 (1999), 269-285. CMP 2000:02
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16D60, 16P40, 16S36, 16W35, 20G42, 81R50
Retrieve articles in all journals with MSC (2000): 16D60, 16P40, 16S36, 16W35, 20G42, 81R50
Additional Information
K. R. Goodearl
Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106
Email:
goodearl@math.ucsb.edu
E. S. Letzter
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843
Address at time of publication:
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
Email:
letzter@math.tamu.edu, letzter@math.temple.edu
DOI:
https://doi.org/10.1090/S0002-9947-00-02639-8
Received by editor(s):
April 22, 1999
Published electronically:
August 8, 2000
Additional Notes:
The research of the first author was partially supported by NSF grant DMS-9622876, and the research of the second author was partially supported by NSF grant DMS-9623579.
Article copyright:
© Copyright 2000
American Mathematical Society