Quantum $n$-space as a quotient of classical $n$-space
HTML articles powered by AMS MathViewer
- by K. R. Goodearl and E. S. Letzter
- Trans. Amer. Math. Soc. 352 (2000), 5855-5876
- DOI: https://doi.org/10.1090/S0002-9947-00-02639-8
- Published electronically: August 8, 2000
- PDF | Request permission
Abstract:
The prime and primitive spectra of $\mathcal {O}_{\mathbf q}(k^{n})$, the multiparameter quantized coordinate ring of affine $n$-space over an algebraically closed field $k$, are shown to be topological quotients of the corresponding classical spectra, $\operatorname {spec} \mathcal {O}(k^{n})$ and $\max \mathcal {O}(k^{n})\approx k^{n}$, provided the multiplicative group generated by the entries of $\mathbf {q}$ avoids $-1$.References
- Gene Abrams and Jeremy Haefner, Primeness conditions for group graded rings, Ring theory (Granville, OH, 1992) World Sci. Publ., River Edge, NJ, 1993, pp.Β 1β19. MR 1344219
- Michael Artin, William Schelter, and John Tate, Quantum deformations of $\textrm {GL}_n$, Comm. Pure Appl. Math. 44 (1991), no.Β 8-9, 879β895. MR 1127037, DOI 10.1002/cpa.3160440804
- K. A. Brown and K. R. Goodearl, Prime spectra of quantum semisimple groups, Trans. Amer. Math. Soc. 348 (1996), no.Β 6, 2465β2502. MR 1348148, DOI 10.1090/S0002-9947-96-01597-8
- C. De Concini, V. G. Kac, and C. Procesi, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (1993), no.Β 2, 405β427. MR 1244875
- Alfred Goldie and Gerhard Michler, Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974/75), 337β345. MR 357500, DOI 10.1112/jlms/s2-9.2.337
- K. R. Goodearl and E. S. Letzter, Prime and primitive spectra of multiparameter quantum affine spaces, Trends in ring theory (Miskolc, 1996) CMS Conf. Proc., vol. 22, Amer. Math. Soc., Providence, RI, 1998, pp.Β 39β58. MR 1491917
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Timothy J. Hodges and Thierry Levasseur, Primitive ideals of $\textbf {C}_q[\textrm {SL}(3)]$, Comm. Math. Phys. 156 (1993), no.Β 3, 581β605. MR 1240587
- Timothy J. Hodges and Thierry Levasseur, Primitive ideals of $\textbf {C}_q[\textrm {SL}(n)]$, J. Algebra 168 (1994), no.Β 2, 455β468. MR 1292775, DOI 10.1006/jabr.1994.1239
- Hans Plesner Jakobsen, Tensoring with small quantized representations, J. Math. Phys. 38 (1997), no.Β 8, 4323β4335. MR 1459660, DOI 10.1063/1.532096
- Anthony Joseph, On the prime and primitive spectra of the algebra of functions on a quantum group, J. Algebra 169 (1994), no.Β 2, 441β511. MR 1297159, DOI 10.1006/jabr.1994.1294
- Anthony Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995. MR 1315966, DOI 10.1007/978-3-642-78400-2
- J. C. McConnell and J. J. Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc. (2) 38 (1988), no.Β 1, 47β55. MR 949080, DOI 10.1112/jlms/s2-38.1.47
- D. G. Northcott, Affine sets and affine groups, London Mathematical Society Lecture Note Series, vol. 39, Cambridge University Press, Cambridge-New York, 1980. MR 569353
- M. Vancliff, Primitive and Poisson spectra of twists of polynomial rings, Algebras and Representation Theory 2 (1999), 269-285.
Bibliographic Information
- K. R. Goodearl
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
- MR Author ID: 75245
- Email: goodearl@math.ucsb.edu
- E. S. Letzter
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- Address at time of publication: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- MR Author ID: 113075
- Email: letzter@math.tamu.edu, letzter@math.temple.edu
- Received by editor(s): April 22, 1999
- Published electronically: August 8, 2000
- Additional Notes: The research of the first author was partially supported by NSF grant DMS-9622876, and the research of the second author was partially supported by NSF grant DMS-9623579.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5855-5876
- MSC (2000): Primary 16D60, 16P40, 16S36, 16W35; Secondary 20G42, 81R50
- DOI: https://doi.org/10.1090/S0002-9947-00-02639-8
- MathSciNet review: 1781280