On cobordism of manifolds with corners
HTML articles powered by AMS MathViewer
- by Gerd Laures
- Trans. Amer. Math. Soc. 352 (2000), 5667-5688
- DOI: https://doi.org/10.1090/S0002-9947-00-02676-3
- Published electronically: August 21, 2000
- PDF | Request permission
Abstract:
This work sets up a cobordism theory for manifolds with corners and gives an identification with the homotopy of a certain limit of Thom spectra. It thereby creates a geometrical interpretation of Adams-Novikov resolutions and lays the foundation for investigating the chromatic status of the elements so realized. As an application, Lie groups together with their left invariant framings are calculated by regarding them as corners of manifolds with interesting Chern numbers. The work also shows how elliptic cohomology can provide useful invariants for manifolds of codimension 2.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- M. F. Atiyah and L. Smith, Compact Lie groups and the stable homotopy of spheres, Topology 13 (1974), 135–142. MR 343269, DOI 10.1016/0040-9383(74)90004-4
- Andrew Baker, Hecke operations and the Adams $E_2$-term based on elliptic cohomology, Canad. Math. Bull. 42 (1999), no. 2, 129–138. MR 1692001, DOI 10.4153/CMB-1999-015-2
- H. S. Vandiver, Certain congruences involving the Bernoulli numbers, Duke Math. J. 5 (1939), 548–551. MR 21
- Jean-Luc Brylinski, Representations of loop groups, Dirac operators on loop space, and modular forms, Topology 29 (1990), no. 4, 461–480. MR 1071369, DOI 10.1016/0040-9383(90)90016-D
- Jean Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380 (French). MR 140120
- P. E. Conner and E. E. Floyd, The relation of cobordism to $K$-theories, Lecture Notes in Mathematics, No. 28, Springer-Verlag, Berlin-New York, 1966. MR 0216511
- Albrecht Dold, Geometric cobordism and the fixed point transfer, Algebraic topology (Proc. Conf., Univ. British Columbia, Vancouver, B.C., 1977) Lecture Notes in Math., vol. 673, Springer, Berlin, 1978, pp. 32–87. MR 517084
- Adrien Douady, Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, 1961/62, Secrétariat mathématique, Paris, 1961/1962, pp. Exp. 1, 11 (French). MR 0160221
- Eldon Dyer, Cohomology theories, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0268883
- A. D. Elmendorf, The Grassmannian geometry of spectra, J. Pure Appl. Algebra 54 (1988), no. 1, 37–94. MR 960990, DOI 10.1016/0022-4049(88)90023-0
- Jens Franke, On the construction of elliptic cohomology, Math. Nachr. 158 (1992), 43–65. MR 1235295, DOI 10.1002/mana.19921580104
- Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136, DOI 10.1007/978-3-663-14045-0
- M. Hovey and H. Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. (2) 60 (1999), 284–302.
- Klaus Jänich, On the classification of $O(n)$-manifolds, Math. Ann. 176 (1968), 53–76. MR 226674, DOI 10.1007/BF02052956
- K. Knapp, Rank and Adams filtration of a Lie group, Topology 17 (1978), no. 1, 41–52. MR 470960, DOI 10.1016/0040-9383(78)90011-3
- Gerd Laures, The topological $q$-expansion principle, Topology 38 (1999), no. 2, 387–425. MR 1660325, DOI 10.1016/S0040-9383(98)00019-6
- Joachim Lillig, A union theorem for cofibrations, Arch. Math. (Basel) 24 (1973), 410–415. MR 334193, DOI 10.1007/BF01228231
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Haynes R. Miller and Douglas C. Ravenel, Morava stabilizer algebras and the localization of Novikov’s $E_{2}$-term, Duke Math. J. 44 (1977), no. 2, 433–447. MR 458410
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469–516. MR 458423, DOI 10.2307/1971064
- Erich Ossa, Lie groups as framed manifolds, Topology 21 (1982), no. 3, 315–323. MR 649762, DOI 10.1016/0040-9383(82)90013-1
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI 10.1016/0001-8708(71)90041-7
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Nigel Ray, Invariants of reframed manifolds, Proc. London Math. Soc. (3) 39 (1979), no. 2, 253–275. MR 548980, DOI 10.1112/plms/s3-39.2.253
- Peter S. Landweber, Douglas C. Ravenel, and Robert E. Stong, Periodic cohomology theories defined by elliptic curves, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 317–337. MR 1320998, DOI 10.1090/conm/181/02040
- Graeme Segal, Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others), Astérisque 161-162 (1988), Exp. No. 695, 4, 187–201 (1989). Séminaire Bourbaki, Vol. 1987/88. MR 992209
- Brian Steer, Orbits and the homotopy class of a compactification of a classical map, Topology 15 (1976), no. 4, 383–393. MR 445524, DOI 10.1016/0040-9383(76)90032-X
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- Arne Strøm, Note on cofibrations. II, Math. Scand. 22 (1968), 130–142 (1969). MR 243525, DOI 10.7146/math.scand.a-10877
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Walter Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596–605. MR 41, DOI 10.1090/S0002-9904-1939-07046-8
- R. M. W. Wood, Framing the exceptional Lie group $G_{2}$, Topology 15 (1976), no. 4, 303–320. MR 488094, DOI 10.1016/0040-9383(76)90023-9
Bibliographic Information
- Gerd Laures
- Affiliation: Fachbereich Mathematik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
- Address at time of publication: Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany
- MR Author ID: 641823
- Email: gerd@laures.de
- Received by editor(s): June 24, 1998
- Published electronically: August 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 5667-5688
- MSC (2000): Primary 55N22, 55T15; Secondary 55Q10, 55N34, 57R20
- DOI: https://doi.org/10.1090/S0002-9947-00-02676-3
- MathSciNet review: 1781277