On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space
Author:
A. N. Dranishnikov
Journal:
Trans. Amer. Math. Soc. 352 (2000), 5599-5618
MSC (2000):
Primary 55M10, 55N45
DOI:
https://doi.org/10.1090/S0002-9947-00-02684-2
Published electronically:
August 8, 2000
MathSciNet review:
1781276
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
For every two compact metric spaces and
, both with dimension at most
, there are dense
-subsets of mappings
and
with
.
- [1] Darryl McCullough and Leonard R. Rubin, Intersections of separators and essential submanifolds of 𝐼^{𝑁}, Fund. Math. 116 (1983), no. 2, 131–142. MR 716227, https://doi.org/10.4064/fm-116-2-131-142
- [2] Darryl McCullough and Leonard R. Rubin, Some 𝑚-dimensional compacta admitting a dense set of imbeddings into 𝑅^{2𝑚}, Fund. Math. 133 (1989), no. 3, 237–245. MR 1065905, https://doi.org/10.4064/fm-133-3-237-245
- [3] Józef Krasinkiewicz and Krzysztof Lorentz, Disjoint membranes in cubes, Bull. Polish Acad. Sci. Math. 36 (1988), no. 7-8, 397–402 (1989) (English, with Russian summary). MR 1101428
- [4] J. Krasinkiewicz, Imbeddings into 𝑅ⁿ and dimension of products, Fund. Math. 133 (1989), no. 3, 247–253. MR 1065906, https://doi.org/10.4064/fm-133-3-247-253
- [5] Stanisław Spież, Imbeddings in 𝑅^{2𝑚} of 𝑚-dimensional compacta with 𝑑𝑖𝑚(𝑋×𝑋)<2𝑚, Fund. Math. 134 (1990), no. 2, 105–115. MR 1074638
- [6] Wojciech Olszewski, Universal spaces for locally finite-dimensional and strongly countable-dimensional metrizable spaces, Fund. Math. 135 (1990), no. 2, 97–109. MR 1076272, https://doi.org/10.4064/fm-135-2-97-109
- [7] A. N. Dranishnikov, On the mapping intersection problem, Pacific J. Math. 173 (1996), no. 2, 403–412. MR 1394397
- [8] A. N. Dranišnikov, D. Repovš, and E. V. Ščepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), no. 3, 237–253. MR 1098904, https://doi.org/10.1016/0166-8641(91)90089-5
- [9] A. N. Dranishnikov, Spanier-Whitehead duality and the stability of intersections of compact spaces, Trudy Mat. Inst. Steklov. 196 (1991), 47–50 (Russian). Translated in Proc. Steklov Inst. Math. 1992, no. 4, 53–56; Discrete geometry and topology (Russian). MR 1111291
- [10] A. N. Dranishnikov, On intersections of compacta in Euclidean space, Proc. Amer. Math. Soc. 112 (1991), no. 1, 267–275. MR 1042264, https://doi.org/10.1090/S0002-9939-1991-1042264-4
- [11] A. N. Dranishnikov, On intersection of compacta in Euclidean space. II, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1149–1154. MR 1060721, https://doi.org/10.1090/S0002-9939-1991-1060721-1
- [12] Stanisław Spież, On pairs of compacta with 𝑑𝑖𝑚(𝑋×𝑌)<𝑑𝑖𝑚𝑋+𝑑𝑖𝑚𝑌, Fund. Math. 135 (1990), no. 3, 213–222. MR 1077512
- [13] Jack Segal and Stanisław Spież, On transversely trivial maps, Proceedings of the Second Soviet-Japan Joint Symposium of Topology (Khabarovsk, 1989), 1990, pp. 91–100. MR 1043207
- [14] S. Spież and H. Toruńczyk, Moving compacta in 𝑅^{𝑚} apart, Topology Appl. 41 (1991), no. 3, 193–204. MR 1135097, https://doi.org/10.1016/0166-8641(91)90003-5
- [15] A. N. Dranišnikov, D. Repovš, and E. V. Ščepin, On intersections of compacta in Euclidean space: the metastable case, Tsukuba J. Math. 17 (1993), no. 2, 549–564. MR 1255491, https://doi.org/10.21099/tkbjm/1496162280
- [16] A. N. Dranishnikov and J. West, On compacta that intersect unstably in Euclidean space, Topology Appl. 43 (1992), no. 2, 181–187. MR 1152318, https://doi.org/10.1016/0166-8641(92)90139-Q
- [17] A. N. Dranišnikov, D. Repovš, and E. V. Ščepin, On approximation and embedding problems for cohomological dimension, Topology Appl. 55 (1994), no. 1, 67–86. MR 1255297, https://doi.org/10.1016/0166-8641(94)90065-5
- [18] Wojciech Olszewski, Completion theorem for cohomological dimensions, Proc. Amer. Math. Soc. 123 (1995), no. 7, 2261–2264. MR 1307554, https://doi.org/10.1090/S0002-9939-1995-1307554-X
- [19] V. I. Kuz′minov, Homological dimension theory, Uspehi Mat. Nauk 23 (1968), no. 5 (143), 3–49 (Russian). MR 0240813
- [20] A. N. Dranishnikov, Homological dimension theory, Uspekhi Mat. Nauk 43 (1988), no. 4(262), 11–55, 255 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 4, 11–63. MR 969565, https://doi.org/10.1070/RM1988v043n04ABEH001900
- [21] Jerzy Dydak, Cohomological dimension and metrizable spaces. II, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1647–1661. MR 1333390, https://doi.org/10.1090/S0002-9947-96-01536-X
- [22] A. N. Dranishnikov, Extension of mappings into CW-complexes, Mat. Sb. 182 (1991), no. 9, 1300–1310 (Russian); English transl., Math. USSR-Sb. 74 (1993), no. 1, 47–56. MR 1133570, https://doi.org/10.1070/SM1993v074n01ABEH003333
- [23] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 97062, https://doi.org/10.2307/1970005
- [24] M. A. Štan′ko, Imbedding of compacta in euclidean space, Mat. Sb. (N.S.) 83 (125) (1970), 234–255 (Russian). MR 0271923
- [25] A. N. Dranishnikov, The Eilenberg-Borsuk theorem for mappings in an arbitrary complex, Mat. Sb. 185 (1994), no. 4, 81–90 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 81 (1995), no. 2, 467–475. MR 1272187, https://doi.org/10.1070/SM1995v081n02ABEH003546
- [26] A. N. Dranishnikov, D. Repovš, and E. V. Ščepin, Dimension of products with continua, Topology Proc. 18 (1993), 57–73. MR 1305123
- [27] A. N. Dranišnikov and D. Repovš, On unstable intersections of 2-dimensional compacta in Euclidean 4-space, Topology Appl. 54 (1993), no. 1-3, 3–11. MR 1255773, https://doi.org/10.1016/0166-8641(93)90047-H
- [28] K. K. Azad and Kavita Srivastava, On 𝑆-equivariant complete invariance property, J. Indian Math. Soc. (N.S.) 62 (1996), no. 1-4, 205–209. MR 1458493
- [29] Jerzy Dydak and Katsuya Yokoi, Hereditarily aspherical compacta, Proc. Amer. Math. Soc. 124 (1996), no. 6, 1933–1940. MR 1307513, https://doi.org/10.1090/S0002-9939-96-03221-2
- [30] A. Dranishnikov and J. Dydak, Extension dimension and extension types, Tr. Mat. Inst. Steklova 212 (1996), no. Otobrazh. i Razmer., 61–94; English transl., Proc. Steklov Inst. Math. 1(212) (1996), 55–88. MR 1635023
- [31] Yaki Sternfeld, A short elementary proof of the Dranishnikov-West theorem on stable intersection of compacta in Euclidean spaces, Proceedings of the International Conference on Set-theoretic Topology and its Applications (Matsuyama, 1994), 1996, pp. 177–178. MR 1425936, https://doi.org/10.1016/S0166-8641(96)00053-3
- [32] Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
- [33] Robert D. Edwards, Demension theory. I, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 195–211. Lecture Notes in Math., Vol. 438. MR 0394678
- [34] Ryszard Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995. MR 1363947
- [35] Robert E. Mosher and Martin C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968. MR 0226634
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55M10, 55N45
Retrieve articles in all journals with MSC (2000): 55M10, 55N45
Additional Information
A. N. Dranishnikov
Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Address at time of publication:
Department of Mathematics, University of Florida, Gainesville, Florida 32611
Email:
dranish@math.psu.edu, dranish@math.ufl.edu
DOI:
https://doi.org/10.1090/S0002-9947-00-02684-2
Received by editor(s):
January 30, 1995
Received by editor(s) in revised form:
January 27, 1999
Published electronically:
August 8, 2000
Article copyright:
© Copyright 2000
American Mathematical Society