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ON THE DIMENSION
OF THE PRODUCT OF TWO COMPACTA

AND THE DIMENSION OF THEIR INTERSECTION
IN GENERAL POSITION IN EUCLIDEAN SPACE

A. N. DRANISHNIKOV

Abstract. For every two compact metric spaces X and Y , both with dimen-
sion at most n − 3, there are dense Gδ-subsets of mappings f : X → Rn and
g : Y → Rn with dimf(X) ∩ g(Y ) ≤ dim(X × Y )− n.

1. Introduction

We know the formula for the dimension of the intersection of two hyperplanes α
and β in general position in euclidean space Rn: dim(α ∩ β) = dimα+ dimβ − n,
and the formula is valid for the estimation of the dimension of the intersection of
two polyhedra in general position in Rn : dim(K ∩ L) ≤ dimK + dimL− n. Using
approximations of compacta by polyhedra, one can obtain the similar estimate for
compacta:

dim(X ∩ Y ) ≤ dimX + dimY − n.
The main result of this paper is strengthening of that inequality to the following:
dim(X ∩ Y ) ≤ dim(X × Y )− n. Since for compact metric spaces the dimension of
the product can be much smaller than the sum of the dimensions, the improvement
is significant.

This paper can be considered as sequel to a series of papers on the mapping
intersection problem. The series was initiated by two papers of D. McCullough
and L. Rubin [1], [2] and then it was continued by J. Krasinkiewicz, K. Lorentz, S.
Spież, J. Segal and H. Toruńczyk from one side and by E.V. Ščepin, D. Repovš, J.
West and the author from the other [3], [4], [5], [12], [14], [13], [6], [8], [15], [17],
[9], [10], [11], [22], [7], [16]. Under investigation was the following conjecture.

Conjecture. There exists a pair of maps f : X → Rn, g : Y → Rn of two compacta
with stable intersection if and only if dim(X × Y ) ≥ n.

We say that two maps f : X → Rn, g : Y → Rn have stable intersection in
Rn if there is an ε > 0 such that, for any ε-perturbations f ′ and g′ of f and g,
Imf ′ ∩ Img′ 6= ∅. Otherwise we say that f and g have unstable intersection.

In this introduction we first consider the history of work on this conjecture. Then
we give a precise formulation of the main result (Theorem A) and a summary of
its proof.
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The conjecture was first proved in the complementary case: dimX + dimY ≤ n
[4],[12],[6],[8]. The main algebraic tool needed for that case was Alexander duality.
Later the conjecture was proved in the so-called metastable case: 2dimX+dimY <
2n−1 [9],[10],[14],[15]. In symmetric form the metastable case applies to compacta
with dimX + dimY ≤ 4n/3 − 1. This case turned out to be more difficult, and
it required a more serious technique, such as the Spanier-Whitehead duality or
Weber’s imbedding theorem. In analogy to the Freudenthal suspension theorem, in
the metastable range the conjecture breaks into the cases 2dimX+ dimY < 2n− 2
and 2dimX+dimY = 2n−2. The latter case required the development, mainly due
to E. Ščepin [15],[14], of a higher dimensional version of the Casson finger move.

Looking for different solutions for the metastable case, I proved the following
version of the conjecture: For an imbedded compactum X ⊂ Rn there is a map g :
Y → Rn of a compactum Y with a stable intersection if and only if dim(X×Y ) ≥ n
[10],[11],[22]. This led to the proof of one direction of the original conjecture [16].
Namely, if dim(X × Y ) ≥ n, then there is a pair of maps f : X → Rn, g : Y → Rn
with stable intersection. Recently Y. Sternfeld [31] found a short proof of that.
Consequently, the original conjecture was reduced to the following statement.

The remaining part of the conjecture. If dim(X × Y ) < n for two com-
pacta X and Y , then every pair of maps f : X → Rn, g : Y → Rn has unstable
intersection.

If one of the compacta X and Y is 0-dimensional, then the conjecture holds. If
both compacta have dimensions higher than zero and dim(X × Y ) < n, then the
upper bound for the sum of the dimensions is dimX + dimY ≤ 2n− 4.

The next achievement was made in [17], when we realized that the conjecture
depends only on the cohomological dimension types of X and Y . It was well-
known [19] that the dimension of the product depends only on the cohomological
dimensions of the factors with respect to the groups of the Bockstein family. If
the conjecture were true, then the other part of the statement would depend only
on the cd-types of the compacta. So, first we proved that the existence of a pair
of maps of two compacta with stable intersection depends only on the cd-types of
compacta. Since the conjecture was already proven for the case when one of the
factors is imbedded in Rn, it is not strange that we managed to reduce the conjecture
to the cohomological dimension type imbedding problem: Given a compactum X
of dimension ≤ n − 2, does there exist a compactum X ′ ⊂ Rn with the same
set of cohomological dimensions with respect to all abelian groups? A positive
answer to the imbedding problem implies a positive answer to the conjecture. The
modern state of the art in cohomological dimension theory allowed us to prove an
imbedding theorem which in its turn gave the proof of the conjecture for the case
when dimX + dimY ≤ 2n− 2

√
n.

Further success in the area was due to the birth of a new discipline, called “ex-
tension theory”. The main purpose of that theory is to study the absolute extension
property of a space X and maps to a given complex (or ANR) M . The absolute
extension property for X means that every map φ : A → M of a closed subset
A ⊂ X can be extended over X . In that case M is called an absolute extensor
for X (formally for the class of spaces {X} consisting of one space X), and the
notation for that is M ∈ AE(X). When we want to emphasize that X has the
absolute extension property, we use Kuratowski’s notation XτM , which is not self
explanatory but it puts X on the first place. The name ‘extension theory’ prob-
ably first appeared in [11], where I proved that XτM implies XτΩΣM . Among
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the other new results in the area we mention briefly the following three, since they
are used in this paper. First, there is the description of the property XτM for
finite-dimensional compacta X and simply-connected complexes M in terms of the
cohomological dimension of X with respect to homology groups of M as coeffi-
cients. Precisely, XτM is equivalent to the system of inequalities dimHi(M)X ≤ i,
i > 0 (Theorem 2). Second, there is Dydak’s union theorem: XτK, Y τL imply
(X ∪ Y )τ(K ∗ L), where ∗ means the join product (Theorem 5). Finally, there is
Olszewski’s completion theorem: For every separable metric space W and every
countable complex K with the property WτK there exists a completion W̄ with
W̄ τK (Theorem 6).

Since XτSn means precisely dimX ≤ n, extension theory generalizes dimension
theory. It is quite natural to expect that all theorems of dimension theory are just
the visible part of the iceberg (see [30]). In [7] I found a version of the Eilenberg-
Borsuk theorem about extension of mappings to spheres. The classic version says
that if X is an n-dimensional compactum and φ : A → Sk is a partial map to the
k-sphere defined on a closed subset of X , then the map φ can be extended over the
complement X −Z of an n− k− 1-dimensional compactum Z. The generalization
says that if XτM ∗N , where M ∗N means the join of M and N , and φ : A→ N is a
partial map, then φ can be extended over the complement X−Z of a compactum Z
with ZτM . If we put N = Sk and M = Sn−k−1, we will get the Eilenberg-Borsuk
theorem. The generalization turns out to be so powerful that it gives the solution of
the realization problem and the cohomological dimension type imbedding problem
simultaneously [7]. Thus in view of the reduction in [17] the conjecture was proved
except for the codimension two case.

There is still an open case when dimX = n − 2 or dimY = n − 2, and n > 4.
The case dimX = dimY = 2 and n = 4 is covered by the complementary case. The
proof in that case is different (see for example [8] or [27]) from the general case.
The main problem for n > 4 appears in the version of the conjecture where one of
the compacta is imbedded in Rn. The difficulties there look enormous, and they
are basically due to the presence of the fundamental groups. The problem with
the fundamental group is that basically the extension theory for non-simple spaces
is not constructed. There is some activity around cohomological dimension with
non-abelian coefficients [29],[28], and perhaps that will grow into a theory which
might help to treat the last case of the conjecture.

The main result of this paper extends the conjecture by giving a general estimate
for the dimension of the intersection of compacta X and Y (when minimized over
all nearby maps). Precisely, we have

Theorem A. Let f : X → Rn and g : Y → Rn be two continuous maps of
compact metric spaces to n-dimensional Euclidean space, and let dimX < n − 2,
dimY < n − 2. Then for any ε > 0 there are ε-approximations f ′ : X → Rn and
g′ : Y → Rn of f and g with dimf ′(X) ∩ g′(Y ) ≤ dim(X × Y )− n.

Notice that when dim(X × Y ) < n, then Theorem A becomes the remaining
part of the conjecture (except for the codimension two case). The inequalities
dimX, dimY ≤ n − 2 are necessary. For example, if X and Y are Pontryagin’s
surfaces Πp and Πq with different primes p and q, then their intersection in R3 is
1-dimensional; but it would have to be 0-dimensional if the formula were true.
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The proof of Theorem A is based on previous results in the area and on compu-
tations in a certain ‘algebra’ representing the algebra of cohomological dimension
types.

If we know the cohomological dimensions of the factors X and Y with respect to
all abelian groups, then in the case of compact spaces X and Y there are Bockstein
formulas for the computation of cohomological dimensions of X×Y . The formulas
are rather elaborate. They are simple only if the coefficient group is the additive
group of a field F ; then the standard logarithmic law holds, dimF (X × Y ) =
dimFX + dimFY . The set of cohomological dimensions of a compactum with
respect to various groups leads to the notion of cohomological dimension type (cd-
type). In this paper in Section 2 we describe a cd-type as a set of four functions
(d, ε, δ; c) on the set of all prime numbers P . Two of these functions, d and c, are
integral-valued, and the other two are Z2-valued. Moreover, the function c is a
constant. We define these functions so that the operation on them generated by
the product of compacta is a sum-product operation, denoted by [+]. It is sum for
d and c and product for ε and δ.

Thus in our approach it is easy to compute the cd-type of the product of two
spaces. We have to pay for that ease by some complications in the comparison
problem. It is easy to compare two cd-types in the original definition [17]: DX ≤
DY if dimGX ≤ dimGY for all abelian groups G. In the language of 4-tuples the
comparison is more complicated. By the definition of the 4-tuple (d, ε, δ; c), the
function c(p) = c corresponds to the cohomological dimension dimQ with respect
to the rationals, and the function d(p) corresponds to dimZp . It turns out to be
convenient to consider ‘cd-types’ with negative c and d(p). This idea is one of the
basic ingredients of the proof of Theorem A.

The proof of Theorem A is contained in Section 5. It relies on preliminary work
with the cohomological dimension type and the extension theory in Sections 3-4.

Having successfully replaced the sum of the dimensions dimX + dimY by the
dimension of the product dim(X × Y ) in some dimensional inequality, it is natural
to try the same in the other inequalities. In Section 6 we consider the classic
Menger-Urysohn formula dim(X ∪ Y ) ≤ dimX + dimY + 1. We prove a better
inequality dim(X ∪ Y ) ≤ dim(X × Y ) + 1 when the union Z = X ∪ Y is compact
and satisfies dim(Z × Z) = 2dimZ.

2. Bockstein algebra

In this section we introduce an abstract algebraic object which we call the Bock-
stein algebra. Elements of that algebra encode dimensional information on com-
pacta. A connection between this and the classical Bockstein theory is made in the
next section.

Let P denote the set of all prime numbers. A family F = (d, ε, δ; c) consisting of
three functions d : P → Z, ε : P → Z2, δ : P → Z2 and a constant c ∈ Z is called a
Bockstein function if (d(p)−c)δ(p) = 0 and (1−ε(p))δ(p) = 0 for all p ∈ P . The first
product here can be interpreted as the product in Z after a multiplicative imbedding
of Z2 in Z as {0, 1}. The second equation is in Z2. Thus, F : P → Z⊕Z2⊕Z2 ⊕Z
is a function on prime numbers, and F (p) = (d(p), ε(p), δ(p); c).

For every two Bockstein functions F1 = (d1, ε1, δ1; c1) and F2 = (d2, ε2, δ2; c2)
we define an operation [+], called sum-product, by the formula

F1[+]F2 = (d1 + d2, ε1ε2, δ1δ2; c1 + c2).
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Assertion 2.1. F1[+]F2 is a Bockstein function.

Proof. 1) ((d1 +d2)− (c1 + c2))δ1δ2 = ((d1− c1)+(d2− c2))δ1δ2 = ((d1− c1)δ1)δ2 +
((d2 − c2)δ2)δ1 = 0.

2) (1−ε1ε2)δ1δ2 = (1−ε1 +ε1(1−ε2))δ1δ2 = ((1−ε1)δ1)δ2 +ε1((1−ε2)δ2)δ1 = 0.
Note that the operation [+] is associative. For every Bockstein function F =

(d, ε, δ; c) we define a conjugate function F̄ = (d̄, ε̄, δ̄; c̄) by the formulae: d̄ = −d,
c̄ = −c, δ̄ = δ and ε̄ = 1− ε+ δ.

Assertion 2.2. F̄ is a Bockstein function.

Proof. 1) (d̄− c̄)δ̄ = −(d− c)δ = 0.
2) (1− ε̄)δ̄ = (1− 1 + ε− δ)δ = (ε− δ)δ = (ε− 1)δ + (1 − δ)δ = (1− δ)δ = 0.

Proposition 2.1. ¯̄F = F for every Bockstein function F .

Proof. We check that ¯̄ε = 1− ε̄+ δ = 1− (1− ε+ δ) + δ = ε.

For any n ∈ Z we denote by the same letter n the Bockstein function (n, 1, 1;n).
Thus we have the natural monomorphism of the integers Z into the monoid F of
Bockstein functions. We note that for every integer m and any Bockstein function
F = (d, ε, δ; c) the product mF = (md,mε,mδ;mc) is also a Bockstein function.
Then we define −F = (−1)F . Note that n̄ = −n.

Generally we don’t have the formula (F1[+]F2) = F̄1[+]F̄2, but the following
proposition holds:

Proposition 2.2. (F [+]n) = F̄ [+](−n) for every Bockstein function F and every
n ∈ Z.

Proof. (F1[+]n) = (d+ n, ε, δ; c+ n) = (d+ n, ε̄, δ̄; c+ n) = (d̄ + n̄, ε̄, δ̄; c̄ + n̄) =
F̄ [+]n̄ = F̄ [+](−n).

We call a Bockstein function F = (d, ε, δ; c) p-regular if δ(p) = 1. In that case
it follows that d(p) = c and ε(p) = 1. If a function F is not p-regular, we call it
p-singular.

Proposition 2.3. F [+]F̄ = (0, δ, δ; 0).

Proof. F [+]F̄ = (d− d, ε(1− ε+ δ), εδ; c− c) = (0, ε− ε2 + εδ, εδ; 0) = (0, εδ, εδ; 0) =
(0, δ, δ; 0). The last equality is due to the condition (1− ε)δ = 0.

There is a natural distributive product operation [×] on F defined by the formula
F1[×]F2 = (d1d2, ε1ε2, δ1δ2; c1c2).

Assertion 2.3. F1[×]F2 is a Bockstein function for every pair of Bockstein func-
tions F1 and F2.

Proof. 1) (d1d2 − c1c2)δ1δ2 = (d1d2 − c1d2 + c1d2 − c1c2)δ1δ2 = (d1 − c1)d2δ1δ2+
c1(d2 − c2)δ1δ2 = 0.

2) (1− ε1ε2)δ1δ2 = 0, as was shown in Assertion 2.1.

The topological meaning of the operation [×] is yet to be understood.
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3. Cohomological dimension type

In this section we give a standard definition of the cohomological dimension
type (cd-type) of a compact space in terms of dimensional functions. Also we
briefly review the Bockstein theory, and we connect the algebra of cd-types with
the Bockstein algebra of Section 2.

We recall that the cohomological dimension of a compactum X over an abelian
group G is dimGX = max{n | Ȟn(X,A;G) 6= 0 for some closed subset A ⊂ X}.
If there is no such maximum, then we let dimGX = ∞. There is the Bockstein
family of abelian groups σ =

⋃
p∈P {Zp,Zp∞ ,Z(p)} ∪ {Q}, where Zp = Z/pZ, Z(p)

is the localization of Z at p and Zp∞ = DirLim{Zpk} and Q is the group of
rationals. Every finite-dimensional compactum X defines a function DX : σ → Z+

by the formula DX(G) = dimGX . A function from σ to Z+ is called a dimensional
function if it is DX for some X . In this paper we consider only finite-dimensional
compacta, although it is known that Bockstein theory works for infinite dimensional
compacta as well if one adds infinity to the set of values of dimensional functions
[20].

We say two compacta X and Y have the same cd-type if DX = DY , and we
will often regard the cd-type as the dimension function itself. If a topological space
Z can be presented as a countable union of compacta

⋃
Xi, then the countable

union theorem states that dimGZ = max{dimGXi | i} for any group G [19].
By virtue of the countable union theorem we obtain that every σ-compact space
(countable union of compacta) Z defines a cd-type of a compactum. Precisely, if Z
is a countable union of compacta Z =

⋃
Xi, then dimGZ = dimGα(

∐
Xi), where

α(
∐
Xi) is the one-point compactification of the disjoint union

∐
Xi.

On the set of all cd-types D one has the natural partial order ≤ and two opera-
tions: D1∨D2 and D1]D2 which correspond to taking the wedge and the product
of compacta. By definition (D1 ∨D2)(G) = max{D1(G), D2(G)} for every G ∈ σ.
The ] operation is defined in formulas (1)-(4S) below.

For every abelian group G we form the family σ(G) by the following rule:
(B1) Q ∈ σ(G)⇔ Q⊗G 6= 0,
(B2) Zp ∈ σ(G)⇔ Zp ⊗G 6= 0,
(B3) Z(p) ∈ σ(G)⇔ Zp∞ ⊗G 6= 0,
(B4) Zp∞ ∈ σ(G)⇔ Tor(Zp, G) 6= 0, where Tor means the torsion product.
We note that σ(Z) = {Q,Z(p),Zp | p ∈ P} and σ(Q) = {Q}, σ(Zp) = {Zp,Zp∞},

σ(Zp∞) = {Zp∞}, and σ(Z(p)) = {Q,Z(p),Zp}. Bockstein’s basis theorem says
that dimGX = max{dimHX | H ∈ σ(G)}. Consequently, the equality DX = DY

implies the equality dimGX = dimGY for all abelian groups G.
There are Bockstein inequalities for cd-types:
BI1-2 D(Zp∞) ≤ D(Zp) ≤ D(Zp∞) + 1,
BI3-4 D(Q) ≤ D(Z(p)) ≥ D(Zp),
BI5 D(Z(p)) ≤ max{D(Q), D(Zp∞) + 1},
BI6 D(Zp∞) ≤ max{D(Q), D(Z(p))− 1}.
It is known that every function from σ to Z+ satisfying the Bockstein inequalities

coincides with DX for some finite-dimensional compactum X [20].

Proposition 3.1. For every group G ∈ σ with G 6= Zp∞ , and for every compactum
X, the inequality dimHi(K(G,n))X ≤ dimGX holds for all integers i ≥ 1 and n ≥ 1.

Proof. There are three cases.
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1) G = Q. In that case Hi(K(Q, n)) is a vector space over Q [32]. Hence only Q
from σ can be in σ(Hi(K(Q, n))). Hence σ(Hi(K(Q, n))) ⊂ σ(Q), and Bockstein’s
basis theorem implies the result.

2) G = Zp. Then Hi(K(Zp, n)) is a p-torsion group (for n ≥ 2, this uses the
generalized relative Hurewicz theorem, while for n = 1 it is by direct calculation).
Hence only Zp and Zp∞ could be in σ(Hi(K(Zp, n))). Bockstein’s basis theorem
again applies.

3) G = Z(p). Since Z(p) is a localization at p of Z, a map f : K(Z, n) →
K(Z(p), n), generated by the inclusion Z→ Z(p) is the localization at p of K(Z, n)
[32]. Then the homology groups Hi(K(Z(p), n)) = Hi(K(Z, n)) ⊗ Z(p) have the
structure of a Z(p)-module. Hence these groups have no q-torsion elements for q
relatively prime to p. Hence the groups Z(q), Zq and Zq∞ with q relatively prime to
p cannot be in σ(Hi(K(Z(p), n))). Thus we can conclude that σ(Hi(K(Z(p), n))) ⊂
{Q,Z(p),Zp,Zp∞}. Since σ(Z(p)) = {Q,Z(p),Zp}, the inequality BI1 shows that
dimHX ≤ dimZ(p)X for any group H ∈ σ(Hi(K(Z(p), n))). Hence, by Bockstein’s
basis theorem, dimHi(K(Z(p),n))X ≤ dimZ(p)X .

We call a cd-type D : σ → Z+ p-regular if D(Zp∞) = D(Z(p)); otherwise we call
D p-singular. Note that in the case of p-regular D we have D(Z(p)) = D(Zp) =
D(Zp∞) = D(Q).

We call a compactum X p-regular (p-singular) if its cd-type DX is p-regular
(p-singular).

Assertion 3.1. Let D be a p-singular cd-type. Then

D(Z(p)) = max{D(Q), D(Zp∞) + 1}.

Proof. First we consider the case when D(Q) ≥ D(Zp∞)+1. In this case D(Z(p)) ≤
D(Q) by BI5. Then BI3 implies that D(Z(p)) = D(Q), and the formula holds.

If D(Q) < D(Zp∞)+1, then D(Z(p)) ≤ D(Zp∞)+1 by BI5. Since D is p-singular,
D(Z(p)) − 1 ≥ D(Zp∞) ≥ D(Q). The last inequality is due to the assumption.
Therefore BI6 implies D(Zp∞) ≤ D(Z(p)) − 1. Hence D(Z(p)) = D(Zp∞) + 1, and
the formula holds.

There are Bockstein formulas for cohomological dimension of the product of two
compacta [19]. We give them in terms of cd-types:

(1) (D1 ]D2)(Q) = D1(Q) +D2(Q),
(2) (D1 ]D2)(Zp) = D1(Zp) + D2(Zp),
(3) (D1 ]D2)(Zp∞) = max{D1(Zp∞) +D2(Zp∞), (D1 ]D2)(Zp)− 1},
(4R) (D1 ]D2)(Z(p)) = D1(Z(p)) +D2(Z(p)) if D1 or D2 is p-regular,
(4S) (D1 ] D2)(Z(p)) = max{D1(Zp∞) + D2(Zp∞) + 1, (D1 ] D2)(Zp),

(D1 ]D2)(Q)} if both Di are p-singular.

Proposition 3.2. The product D1 ]D2 of two cd-types is p-regular if and only if
both factors D1 and D2 are p-regular.

Proof. If both factors are p-regular, then by the Bockstein formulas (3) and (4R)
the product D1 ]D2 is p-regular.

If both factors are p-singular, then the Bockstein formulas (3) and (4S) im-
ply that (D1 ] D2)(Z(p)) ≥ max{D1(Zp∞) + D2(Zp∞) + 1, (D1 ] D2)(Zp)} ≥
max{D1(Zp∞) + D2(Zp∞), (D1 ]D2)(Zp) − 1}+ 1 = (D1 ]D2)(Zp∞) + 1. Hence
D1 ]D2 is p-singular.



5606 A. N. DRANISHNIKOV

If only one of the factors, sayD2, is p-singular, then (D1]D2)(Z(p)) = D1(Z(p))+
D2(Z(p)) by (4R) and D2(Z(p)) ≥ D2(Zp∞) + 1 by Assertion 3.1. Since D1(Z(p)) =
D1(Zp∞), we have that (D1 ]D2)(Z(p)) ≥ D1(Zp∞) +D2(Zp∞) + 1. On the other
hand, (D1 ] D2)(Z(p)) ≥ (D1 ] D2)(Zp) by the inequality BI4. Hence, by the
Bockstein formula (3), (D1 ]D2)(Z(p)) ≥ (D1 ]D2)(Zp∞) + 1. Therefore D1 ]D2

is p-singular.

Proposition 3.3. There is a morphism Φ : (D,]) → (F , [+]) of monoids defined
by the formulas Φ(D) = (dD, εD, δD; cD) : dD(p) = D(Zp), cD = D(Q), εD(p) =
1 +D(Zp∞)−D(Zp) and δD(p) = 1 if and only if D is p-regular. The morphism Φ
is injective with the image

ImΦ = F+ = {(d, ε, δ; c) ∈ F | c > 0, (d(p) + ε(p)− 1) > 0} ∪ {(0, 1, 1; 0)};
it takes p-regular cd-types to p-regular functions and p-singular to p-singular.

Proof. If D is p-singular, then δ(p) = 0, so the formulas hold. If D is p-regular, we
have D(Q) = D(Zp) = D(Zp∞). Hence dD(p) = cD and εD(p) = 1. Then it follows
that Φ(D) ∈ F .

We show that Φ(D1 ]D2) = Φ(D1)[+]Φ(D2). By Proposition 3.2, δD1]D2(p) =
δD1(p)δD2(p). Now the only possible problem could be with ε. By the product
formulae we have

εD1]D2(p) = 1 +max{D1(Zp∞) +D2(Zp∞), D1(Zp) +D2(Zp)− 1}
−D1(Zp)−D2(Zp) = 0

if εD1(p) = εD2(p) = 0, and = εD1(p) + εD2(p)− 1 otherwise. In both cases modulo
2 it equals εD1(p)εD2(p).

The homomorphism Φ is a monomorphism because one can recover D uniquely
from Φ(D). The formulas for the inverse map Φ−1 are:

D(Q) = c,

D(Zp) = d(p),

D(Zp∞) = d(p) + ε(p)− 1,

D(Z(p)) = max{c, d(p) + ε(p)− δ(p)}.
In the case of p-regular D the last equality turns into the equality D(Z(p)) =

max{D(Q), D(Zp∞)}, which is correct. In the case of p-singular D the last equality
follows from Assertion 3.1.

If D = DX ∈ D and D(G) = 0 for some G ∈ σ, then X is 0-dimensional,
so D(G) = 0 for all G ∈ σ and Φ(D) = (0, 1, 1, 0). If D = DX for a positive-
dimensional X , then clearly c and d + ε − 1 are positive. Conversely, one can
check that if c, d + ε − 1 > 0 then D(G) > 0 for all G ∈ σ. It easy to check that
every function D defined as Φ−1(F ) for a given Bockstein function F ∈ F satisfies
the Bockstein inequalities BI1-6. Hence by the realization theorem [20] there is a
compactum X such that D = DX in the case of positive D.

It remains unclear how to define a compactum X with the dimensional function
DX = DY [×]DZ in terms of compacta Y and Z.

Remark 3.1. The formulas for Φ−1 define an injective map µ from F to the set of
integral-valued functions on σ. Using µ, one can define a partial order on F by
setting F1 ≤ F2 if and only if µ(F1)(G) ≤ µ(F2)(G) for all G.
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From this point we are going to identify dimensional functions with their images
in F under the imbedding Φ. Now we will use the same symbol [+] for the product
of cd-types. We denote the cd-type of the n-cube by n. Note that the function
D + n defined as (D + n)(G) = D(G) + n is also a cd-type which corresponds to
D[+]n.

Proposition 3.3 and the formulas for Φ−1 easily imply the next statement.

Proposition 3.4. D[+]D̄(G) = 0 if G 6= Zp∞ , and

D[+]D̄(Zp∞) =
{

0, if D is p-regular;
−1, if D is p-singular.

For every function D : σ → Z we define the norm ‖D‖ = max{D(Z(p)) | p ∈ P}.
We let ‖D‖ = ∞ if D is unbounded. By virtue of Bockstein’s basis theorem and
BI3-4, we have the equality ‖DX‖ = dimZX . For finite-dimensional compacta, by
the Alexandroff theorem [19], ‖DX‖ = dimX . Note that the norm of D = (d, ε, δ; c)
can be computed by the formula ‖D‖ = max{c, d(p) + ε(p)− δ(p) | p ∈ P}.
Assertion 3.2. Let D,D′ and D1 be cd-types such that D ≤ D′. Then D[+]D1

≤ D′[+]D1.

Proof. Let X,X ′ and X1 be compacta such that D = DX , D′ = DX′ and D1 =
DX1 . Let Y = X

∐
X ′. Then DX′ = DY . Therefore,

(D[+]D1)(G) = (DX [+]DX1)(G) = dimG(X ×X1) ≤ dimG(Y ×X1)

= (DY [+]DX1)(G) = (D′[+]D1)(G)

for any G.

We need the following:

Theorem 1. Let X be a compactum with dimX < n−2. Then the set of maps f :
X → Rn for which the cd-type of the image Df(X) satisfies DX ≤ Df(X) ≤ DX ∨ 2
is a dense Gδ set in the space of all continuous maps C(X,Rn).

Theorem 1 formally follows from the solution of the cohomological dimension
type imbedding problem [7] and the Reduction theorem (Theorem 1.12 in [17])
asserting that the following three conditions are equivalent for any compactum X
of dimension ≤ n− 3:

(1) DX = DX′ for some compactum X ′ ⊂ Rn.
(2) For any compactum Y with dim(X×Y ) < n, every pair of maps f : X → Rn,

g : Y → Rn has an unstable intersection.
(3) The set of maps f : X → Rn with DX = Df(X) is a dense Gδ set in C(X,Rn).
Unfortunately the proof of (1)⇒ (2) in [17] contains a gap. The case of dimY =

n − 2 is not covered there. The correct version of the reduction theorem is the
following:

Reduction Theorem. For any compactum X of dimension ≤ n− 3 the following
statements are equivalent:

(1) There is a compactum X ′ ⊂ Rn with DX ≤ DX′ ≤ DX ∨ 2.
(2) For any compactum Y of dimension ≤ n−3 with dim(X×Y ) < n, all maps

f : X → Rn, g : Y → Rn have unstable intersections.
(3) The set of maps f : X → Rn with the cd-type of the image Df(X) such that

DX ≤ Df(X) ≤ DX ∨ 2 is a dense Gδ set in the space of all continuous maps
C(X,Rn).
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Proof. (1) ⇒ (2). Suppose that X ′ ⊂ Rn with DX′ ≤ DX ∨ 2. Let Y be a
compactum with dimY ≤ n − 3 and dim(X × Y ) < n. Since DX′ ≤ DX∨I2 , we
have dim(X ′ × Y ) ≤ dim((X ∨ I2)× Y ). Hence

dim(X ′ × Y ) ≤ max{dim(X × Y ), dim(I2 × Y )} < n.

The rest of the argument is the same as in Theorem 1.12 of [17].
(2) ⇒ (3). Let G ∈ σ and let m = min{n− 3, (n − 1) − dimGX}. Consider a

test space Y = Tm(G). Since dimX − dimGX < m, the G-testing equality implies
dim(X×Y ) = dimGX+m < n (see Theorem 1.1 of [17]). Note that dimY = m ≤
n−3. Then by (2) all maps f : X → Rn, g : Y → Rn have unstable intersections. By
Lemma 3.1 of [17] there is a dense Gδ-set CG ⊂ C(X,Rn) such that for every f ′ ∈
CG the image f ′(X) is Y -negligible. Additionally we may assume that CG consists
of light maps which do not raise the covering dimension. Y -negligibility of f ′(X)
means that every map g : Y → Rn can be approximated by maps missing f ′(X).
Then, by the main result of [11], dim(f ′(X) × Y ) < n. Since a light map cannot
lower the cohomological dimension, dimf ′(X)−dimGf

′(X) ≤ dimX−dimGX < m,
and hence the G-testing equality holds: dim(f ′(X) × Tm(G)) = dimGf

′(X) + m.
Hence dimGf

′(X) + m ≤ n − 1. If dimGX = 1, then m = n − 3 and hence
dimGf

′(X) ≤ 2. If dimGX > 1, then m = n−1−dimGX , and hence dimGf
′(X) ≤

dimGX . Thus DX(G) ≤ Df ′(X)(G) ≤ (DX ∨ 2)(G) = max{dimGX, 2} for all
f ′ ∈ CG. Note that the intersection C =

⋂
G∈σ CG is a dense Gδ set. Then for

every f ′ ∈ C we have that DX ≤ Df ′(X) ≤ DX ∨ 2.
(3)⇒ (1) is obvious.

Now Theorem 1 follows from the solution of the cd-type imbedding problem [7].
We note that Corollary 6 of [7] still is not proved, because the argument for that

relied on the unproved version of the reduction theorem.

4. Extension type

An extension problem is the problem of extending a map f : A → M from a
closed subset A ⊂ X over the whole space X . The situation when every extension
problem has a solution for given X and M we denote by the symbol XτM . Note
that XτSn means dimX ≤ n and XτK(G,n) means dimGX ≤ n. It makes sense
to consider sufficiently nice spaces M , for example, CW -complexes. Let C be a class
of topological spaces; we define a partial order on the set of all (countable) CW -
complexes as follows: N ≤M if XτM implies XτN for every space X ∈ C. We say
N and M define the same extension type if N ≤M and M ≤ N . This is an equiv-
alence relation on the set of (countable) CW -complexes; we call it e-equivalence
for the case when C is the class of all finite-dimensional metrizable compacta. Per-
haps it is more natural to consider the class of all (metric) compacta, but for the
purpose of this paper the class of finite dimensional compacta is more appropriate.
Equivalence classes are called extension types. We note that homotopy equivalent
complexes define the same extension type, but the converse is not necessarily true:
the extension type of the n-sphere Sn is the same as the extension type of Sn ∨Sm
if m ≥ n. We note that the partial order on CW -complexes induces a partial order
on extension types. It is remarkable that a one-point space gives the minimal ele-
ment with respect to that order and a two-point space gives the maximal element.
It turns out that extension types of one-connected complexes are dual to cd-types
(see [30] for more details).
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Everywhere in the rest of this paper a compactum means a compact metric space.

Theorem 2 ([22]). For any simply connected complex M and any finite-dimen-
sional compactum X, the following are equivalent:

1) XτM ,
2) dimHi(M)X ≤ i for all i,
3) dimπi(M)X ≤ i for all i.
Here Hi(M) is the i-dimensional homology group of M and πi(M) is the i-

dimensional homotopy group of M .

The proof of Theorem 2 uses the Dold-Thom theorem on the infinite symmetric
power SP∞ [23].

Let M be a CW -complex and G ∈ σ a group of the Bockstein family. We define
nM (G) = min{i | G ∈ σ(Hi(M))} or infinity. It is convenient for us to define
K(G,∞) to be a one-point space.

Note that nΣL(G) = nL(G) + 1, where ΣL is the suspension on L.

Proposition 4.1. Every 1-connected CW -complex M is e-equivalent to the count-
able wedge

∨
G∈σK(G,nM (G)).

Proof. Assume that XτM ; then by Theorem 2 dimHi(M)X ≤ i. For each G ∈ σ
with nM (G) <∞, let i = nM (G). Then G ∈ σ(Hi(M)), and hence

dimGX ≤ max{dimHX | H ∈ σ(Hi(M))} = dimHi(M)X ≤ nM (G).

Therefore XτK(G,nM (G)) and then Xτ(
∨
σK(G,nM (G))), i.e.∨

σ

K(G,nM (G)) ≤M.

Now assume that Xτ
∨
σK(G,nM (G)). Then XτK(G,nM (G)) for every G ∈ σ.

Hence dimGX ≤ nM (G). By the Bockstein theorem dimHi(M)X = dimGX for
some G ∈ σ(Hi(M)). By the definition, i ≥ nM (G). Hence dimHi(M)X ≤ i. Since
i is arbitrary, Theorem 2 implies that XτM .

Assertion 4.1. Let L,N be CW complexes and L ≤ N . Then ΣL ≤ ΣN .

Proof. The inequality L ≤ N is equivalent the system of inequalities nL(G) ≥
nN(G), G ∈ σ. Since nΣL(G) = nL(G) + 1, we have that nΣL(G) ≥ nΣN (G) for all
G. Hence ΣL ≤ ΣN .

For every non-negative function D : σ → Z+ we define

K(D) =
∨
G∈σ

K(G,D(G)).

Note that for every compact space C with CτK(D) we have the inequality DC ≤ D.
Indeed, CτK(D) implies that CτK(G,D(G)) for all G, so dimGC ≤ D(G), which
means DC(G) ≤ D(G).

Assertion 4.2. Let D be a positive cd-type. Then ΣK(D) ≤ K(D + 1).

Proof. First we show that ΣK(G,n) ≤ K(G,n+ 1) for all G ∈ σ and n ≥ 1. If we
have the property Y τK(G,n+ 1), it means that dimGY ≤ n+ 1. We are going to
apply Theorem 2 to obtain the property Y τΣK(G,n). For i ≤ n we have

Hi(ΣK(G,n)) = 0,
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and the inequality dimHi(ΣK(G,n))Y ≤ i holds automatically. For i > n by virtue of
Proposition 3.1 we have dimHi(ΣK(G,n))Y = dimHi−1(K(G,n))Y ≤ dimGY ≤ n+1 ≤
i for G 6= Zp∞ . Since the groups Hk(K(Zp∞ , n)) = Hk(DirLim(K(Zpl , n))) =
DirLim(Hk(K(Zpl , n))) are p-torsion groups [35], by the Bockstein basis theorem
and the inequality BI2 we have dimHi−1(K(Zp∞ ,n))Y ≤ dimZpY ≤ dimZp∞Y + 1 ≤
n + 2 ≤ i for i > n + 1. If i = n + 1 then Hn(K(Zp∞ , n)) = Zp∞ and again
dimHi−1(K(Zp∞ ,n))Y = dimZp∞Y ≤ n+ 1 ≤ i. Thus, we have dimHi(ΣK(G,n))Y ≤ i
for all i. Since ΣK(G,n) is simply connected for n ≥ 1, we can apply Theorem 2.

Next, in the general case we have equivalences

Y τK(D + 1) ⇔ Y τ
∨
G∈σ

K(G,D(G) + 1)

⇔ Y τK(G,D(G) + 1) for all G ∈ σ.

By the above argument we have Y τΣK(G,D(G)) for all G ∈ σ. Hence

Y τ
∨
G∈σ

ΣK(G,D(G)),

which is equivalent to

Y τΣ(
∨
G∈σ

K(G,D(G))) ⇔ Y τΣK(D).

Let K ∗L denote the join product of K and L in the category of CW-complexes,
i.e. we consider a finer topology on the ordinary join K × L× [−1, 1]/(x, y,±1) =
(x′, y′,±1). In other words, K ∗ L is the direct limit DirLim{Kα ∗ Lβ} over the
partially ordered family of products of finite subcomplexes Kα ⊂ K and Lβ ⊂ L.
If we fix base points x0 ∈ K and y0 ∈ L, then a contractible subcomplex C ⊂ K ∗L
can be defined as the union of two cones: C(L, x0) and C(K, y0). Then the quotient
map q : K ∗ L → K ∗ L/C is a homotopy equivalence. We note that the quotient
space is homeomorphic to the reduced suspension Σ(K∧L) over the smash product
in the category of CW-complexes.

The following theorem is proved in [7].

Theorem 3. Suppose that K and L are countable CW-complexes. If the property
XτK ∗ L holds for some compactum X, then there is an Fσ-set Z ⊂ X such that
ZτL and (X − Z)τK.

Proposition 4.2. Let M = K(D1) ∧K(D2) for cd-types D1 and D2. Then:
1) nM (H) = D1(H) +D2(H) for every group H ∈ σ and H 6= Zp∞ .
2)

nM (Zp∞) =
{
D1(Zp∞) +D2(Zp∞), if D1 or D2 is p-regular,
min{D1(Zp) +D2(Zp), D1(Zp∞) +D2(Zp∞) + 1}, otherwise.

Proof. Denote L1(G) = K(G,D1(G)) and L2(G′) = K(G′, D2(G′)).
Since M =

∨
G,G′∈σ(L1(G) ∧ L2(G′)), we have

Hi(M) =
⊕
G,G′

Hi(L1(G) ∧ L2(G′)).

Denote nG,G′(H) = nL1(G)∧L2(G′)(H). Since σ(
⊕
Gi) =

⋃
σ(Gi), we have

nM (H) = min{nG,G′(H)}.
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Since Hi(K1 ∧K2)⊕Hi(K1 ∨K2) = Hi(K1 ×K2), the Künneth formula gives

0→
⊕

k+l=i;k,l>0

(Hk(L1(G)) ⊗Hl(L2(G′)))→ Hi(L1(G) ∧ L2(G′))

→
⊕

k+l=i−1

Tor( , )→ 0.

Thus Hi(L1(G) ∧ L2(G′)) = 0 when i < D1(G) +D2(G′), and

HD1(G)+D2(G′)(L1(G) ∧D2(G′)) = G⊗G′.
Then nG,G′(H) ≥ D1(G) +D2(G′) for any group H and any G,G′.

We consider four cases.
1) H = Q. By the definition, nG,G(Q) = min{i | Hi(L1(G) ∧ L2(G′))⊗Q 6= 0}.

Since the tensor product of Q with a torsion group is zero, the Künneth formula
implies that nG,G′(Q) = min{i | Hk(L1(G))⊗Hl(L2(G′))⊗Q 6= 0; k+l = i}. Since
homology groups H∗(K(G,n)) of a torsion group G are torsion groups, nG,G′(Q) <
∞ only if G,G′ ∈ {Q,Z(p)}. Easy computations show that nG,G′(Q) = D1(G) +
D2(G′) in that case. The Bockstein inequality BI3 implies that D1(Q) +D2(Q) =
min{D1(G) +D2(G′) | G,G′ ∈ {Q,Z(p)}} = min{nG,G′(Q)} = nM (Q).

2) H = Zp. Note that in this case

nG,G′(Zp) = min{i | Hi(L1(G) ∧ L2(G′))⊗ Zp 6= 0}.
By the Künneth formula, Hi(L1(G)) ∧ L2(G′))⊗ Zp 6= 0 if and only if

Hk(L1(G)) ⊗Hl(L2(G′))⊗ Zp 6= 0

for some k, l with k + l = i or

Tor(Hk(L1(G)), Hl(L2(G′))⊗ Zp) 6= 0

for some k, l with k + l = i − 1. Since tensoring with Zp does not preserve short
exact sequences, we have to add here that if

(
⊕

k+l=i−1

Tor(Hk(L1(G)), Hl(L2(G′))))⊗ Zp = 0,

then
Tor(

⊕
k+l=i−1

Tor(Hk(L1(G)), Hl(L2(G′))),Zp) = 0

and hence

(
⊕

k+l=i;k,l>0

(Hk(L1(G))⊗Hl(L2(G′))))⊗ Zp = Hi(L1(G) ∧ L2(G′))⊗ Zp.

Therefore
nG,G′(Zp) = min{i | Hk(L1(G)) ⊗Hl(L2(G′))⊗ Zp 6= 0

for some k, l with k + l = i

or Tor(Hk(L1(G)), Hl(L2(G′)))⊗ Zp 6= 0 for some k + l = i− 1}.
Since Hk(K(Z(q), n)) is a p-divisible group (see the proof of Proposition 3.1),

nG,G′(Zp) = ∞ if one of the groups G,G′ equals Q or Z(q) for a prime q 6= p.
Since Hk(K(G,n)) is a q-torsion group for a q-torsion group G, we may consider
only G,G′ ∈ {Z(p),Zp,Zp∞}. Note that nG,G′(Zp) = D1(G) + D2(G′) if G,G′ ∈
{Z(p),Zp}. If only one of the groups G,G′ equals Zp∞ , say G′, then G⊗G′⊗Zp =
G ⊗ Zp∞ ⊗ Zp = 0 and hence nG,G′(Zp) > D1(G) + D2(Zp∞). By the Bockstein
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inequalities, nG,G′(Zp) ≥ D1(G) + D2(Zp) ≥ D1(Zp) + D2(Zp). To complete the
proof in this case we show that nZp∞ ,Zp∞ (Zp) > D1(Zp∞) + D2(Zp∞) + 1. Since
Zp∞ ⊗ Zp∞ = 0, it follows that nZp∞ ,Zp∞ (Zp) > D1(Zp∞) + D2(Zp∞). Denote
D1(Zp∞) = k and D2(Zp∞) = l. Note that Hk(L1(Zp∞))⊗Hl+1(L2(Zp∞))⊗Zp =
0 = Hk+1(L1(Zp∞)) ⊗ Hl(L2(Zp∞)) ⊗ Zp. Since Tor(Zp∞ ,Zp∞) = Zp∞ , we have
that Tor(Hk(L1(Zp∞)), Hl(L2(Zp∞)))⊗ Zp = 0. Therefore

Hk+l+1(L1(Zp∞) ∧ L2(Zp∞))⊗ Zp = 0.

Hence nZp∞ ,Zp∞ (Zp) > k + l + 1. By the inequality B2 we have

nZp∞ ,Zp∞ (Zp) ≥ (k + 1) + (l + 1) ≥ D1(Zp) +D2(Zp).

Hence nM (Zp) = D1(Zp) +D2(Zp).
3) H = Z(p). By the definition,

nG,G′(Z(p)) = min{i | Hi(L1(G) ∧ L2(G′))⊗ Zp∞ 6= 0}
= min{i | Hk(L1(G)) ⊗Hl(L2(G′))⊗ Zp∞ 6= 0; k + l = i}.

Note that only for G = G′ = Z(p) can we have nG,G′(Z(p)) 6=∞. Hence,

nM (Z(p)) = nZ(p),Z(p)(Z(p)) = D1(Z(p)) +D2(Z(p)).

4) H = Zp∞ . By the definition

nG,G′(Zp∞) = min{i | Tor(Hi(L1(G) ∧ L2(G′)),Zp) 6= 0}.
Only when G,G′ ∈ {Z(p),Zp,Zp∞} can the group Hi(L1(G) ∧ L2(G′)) contain
p-torsion. Hence nM (Zp∞) = min{nG,G′(Zp∞) | G,G′ ∈ {Z(p),Zp,Zp∞}}. The
computations show that

nZ(p),Zp(Zp∞) = D1(Z(p)) +D2(Zp),
nZp,Z(p)(Zp∞) = D1(Zp) +D2(Z(p)),

nZp,Zp(Zp∞) = D1(Zp) +D2(Zp),
nZp∞ ,Zp∞ (Zp∞) = D1(Zp∞) +D2(Zp∞) + 1,

nZp,Zp∞ (Zp∞) = D1(Zp) +D2(Zp∞) + 1,

nZp∞ ,Zp(Zp∞) = D1(Zp∞) +D2(Zp) + 1,

nZ(p),Zp∞ (Zp∞) = D1(Z(p)) +D2(Zp∞),

nZp∞ ,Z(p)(Zp∞) = D1(Zp∞) +D2(Z(p)).

According to the general inequality nG,G′(H) ≥ D1(G) + D2(G′) we have that
nZ(p),Z(p)(Zp∞) ≥ D1(Z(p)) +D2(Z(p)).

If D1 is p-regular, then nM (Zp∞) = D1(Zp∞) +D2(Zp∞) = D1(Z(p)) +D2(Zp∞)
by Bockstein’s inequalities. Similarly, nM (Zp∞) = D1(Zp∞) + D2(Zp∞) if D2 is
p-regular.

If both D1 and D2 are p-singular, then D1(Z(p)) + D2(Zp∞) ≥ D1(Zp∞) +
D2(Zp∞)+1 and D1(Zp∞)+D2(Z(p)) ≥ D1(Zp∞)+D2(Zp∞)+1. By virtue of this
and the Bockstein inequalities,

nM (Zp∞) = min{D1(Zp) +D2(Zp), D1(Zp∞) +D2(Zp∞) + 1}.

Proposition 4.3. Let D1 and D2 be cd-types. Then

K(D1) ∧K(D2) ≤ K(D1[+]D2).
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Proof. Let M be as in Proposition 4.2. We may assume that M has the form
specified in Proposition 4.1, and thus it suffices to show that D1[+]D2(G) ≤ nM (G)
for every G ∈ σ. The result follows from Proposition 4.2, Bockstein inequalities
BI1-6, Bockstein formulas 1-4S, and Assertion 3.1.

5. Proof of Theorem A

We need the following theorem, which was proven first in [10], and later with a
better proof, in [22].

Theorem 4. Let X ⊂ Rn be a tame compact subset of dimension dimX < n− 2.
Assume that dim(X×Y ) < n for some compact space Y . Then every map g : Y →
Rn can be approximated arbitrarily closely by maps g′ : Y → Rn −X.

We recall that a compactumX ⊂ Rn is tame if it has the 1-ULC property: for ev-
ery x ∈ X and for every open neighborhood U in Rn there is a smaller neighborhood
V such that the inclusion V −X ↪→ U−X induces the zero homomorphism between
the fundamental groups. For a codimension three tame compactum X ⊂ Rn every
map of a 1-dimensional polyhedron f : K1 → Rn can be approximated arbitrarily
closely by maps f ′ with f ′(K1) ∩X = ∅ [33]. This implies that a compact subset
of a codimension three tame compactum is tame itself.

Remark 5.1. The compactum X in Theorem 4 can be replaced by a countable union⋃
Xi of tame compacta.

Proof of Theorem A. Let f : X → Rn, g : Y → Rn be given maps and let ε > 0.
By Theorem 1 we can find an ε-approximation f ′ : X → Rn with DX ≤ Df ′(X) ≤
DX ∨ 2. By Štanko’s reimbedding theorem [24] we may assume that f ′(X) is a
tame subset in Rn. Let us denote X ′ = f ′(X) and let dim(X × Y ) = m. If m < n
then the theorem is proven by [7]. Consider the cd-type D′ = DX′ ∨ (D̄Y [+]m).
We will show that D′(G) ≥ m − n + 2 for all G ∈ σ. By virtue of the Bockstein
inequalities it suffices to check this inequality for G = Q and G = Zp∞ . First
we note that D′(Q) = max{DX′(Q), D̄Y (Q) +m} ≥ D̄Y (Q) +m = m−DY (Q) ≥
m−(n−3) ≥ m−n+2. Here we used the inequality DY (Q) ≤ dimY ≤ n−3. Next,
D′(Zp∞) = max{DX′(Zp∞), (D̄Y [+]m)(Zp∞)} ≥ (D̄Y [+]m)(Zp∞) = m+ d̄Y + ε̄Y −
1 = m−dY +(1−εY +δY )−1 = m−dY +δY −εY ≥ m−dY −1 ≥ m−(n−3)−1 =
m−n+ 2. Let k = m−n+ 1; then D′− k is a positive dimensional function. Since
D′− k = Φ−1(D′[+]− k), where Φ is the imbedding of Proposition 3.3, D′ − k is a
positive cd-type. Assertions 4.1 and 4.2 imply the chain of inequalities of cd-types:

ΣkK(D′ − k) ≤ Σk−1K(D′ − k + 1) ≤ · · · ≤ ΣK(D′ − 1) ≤ K(D′).

Since DX′ ≤ D′, it follows that K(DX′) ≥ K(D′). Since X ′τK(DX′) and
K(DX′) ≥ ΣkK(D′ − k), we have X ′τΣkK(D′ − k). Note that ΣkK(D′ − k) is
homotopy equivalent to the join product Sk−1 ∗K(D′ − k), and hence

X ′τ(Sk−1 ∗K(D′ − k)).

Theorem 3 implies that there exists an Fσ-set Z ⊂ X ′ with

ZτK(D′ − k) and (X ′ − Z)τSk−1,

i.e. dim(X ′ − Z) ≤ k − 1. Note that for every compact subset C ⊂ Z,

dim(C × Y ) = ‖DC [+]DY ‖ ≤ (Assertion 3.2)‖(D′ − k)[+]DY ‖
= max{‖DX′[+]DY ‖, ‖m+ D̄Y [+]DY ‖} − k.
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Since DX′ ≤ DX ∨ 2, Assertion 3.2 implies
‖DX′ [+]DY ‖ ≤ max{‖DX [+]DY ‖, ‖2[+]DY ‖}

= max{dim(X × Y ), 2 + dimY } = m.

By Proposition 3.4 ‖D̄Y [+]DY ‖ = 0 and hence ‖m[+]D̄Y [+]DY ‖ = m. Then

dim(C × Y ) ≤ m− k = n− 1.

Hence by the countable union theorem dim(Z×Y ) ≤ n−1. Using Remark 5.1 and
the fact that Z is a σ-compactum, there is an ε-approximation g′ of g : Y → Rn
with g′(Y ) ∩ Z = ∅. Therefore g′(Y ) ∩ f ′(X) ⊂ X ′ − Z, and hence

dim(g′(Y ) ∩ f ′(X)) ≤ k − 1 = m− n = dim(X × Y )− n.

6. Dimension of the union

It is known that there are two possibilities for the dimension of the square of an
n-dimensional compactum X : either dimX2 = 2n or dimX2 = 2n − 1 [19]. This
dichotomy defines a partition of the class of compacta into two types: the first
(with dimX2 = 2dimX) and the second.

Theorem B. Assume that a compactum Z is expressed as the union X∪Y . Then:
1) dim(X ∪ Y ) ≤ dim(X × Y ) + 2,
2) dim(X ∪ Y ) ≤ dim(X × Y ) + 1 provided Z is of the first type.
If X is an Fσ-set in Z, then there exist compacta X ′ ⊂ X and Y ′ ⊂ Y such that
3) dim(X ∪ Y ) ≤ dim(X ′ × Y ′) + 2 and
4) dim(X ∪ Y ) ≤ dim(X ′ × Y ′) + 1 provided Z is of the first type.

For the second type of compacta Z statement 4) of Theorem B generally is not
true.

Theorem C. There exists a compactum Z = X ∪ Y with X ∈ Fσ such that

dim(X ∪ Y ) > dim(X ′ × Y ′) + 1

for any compacta X ′ ⊂ X and Y ′ ⊂ Y .

The following proposition is well-known.

Proposition 6.1. For every finite-dimensional compactum Z there is a field F ∈ σ
such that dimZ ≤ dimFZ + 1. A compactum Z is of the first type if and only if
there is a field F ∈ σ such that dimFZ = dimZ.

Proof. Since Z is finite-dimensional, by the Alexandroff theorem dimZ = dimZZ.
By the Bockstein basis theorem, dimZ = dimZ(p)Z for some prime number p. By
the inequalities BI5 and BI1 we have dimZ ≤ max{dimQZ, dimZpZ + 1}. Hence
Zp or Q is that field F ∈ σ.

If dimFZ = dimZ for some field F ∈ σ, then dimZ2 ≥ dimFZ
2 = dimFZ +

dimFZ = 2dimZ. The inequality dimZ2 ≤ 2dimZ is well-known; hence dimZ2 =
2dimZ. Assume that dimZ2 = 2dimZ; then (see the formulas for Φ−1 in Proposi-
tion 5)

dimZ2 = ‖DZ [+]DZ‖ = max{2c, 2d(p) + ε2(p)− δ2(p)}
= max{2c, 2d(p) + ε(p)− δ(p)} = 2max{c, d(p) + 1/2(ε(p)− δ(p))},

while
2dimZ = 2‖DZ‖ = 2max{c, d(p) + ε(p)− δ(p)}.



DIMENSION OF THE PRODUCT OF TWO COMPACTA 5615

It follows that either this maximum is equal to c or ε(p) − δ(p) = 0. In the first
case F = Q, in the second F = Zp.

We need the following two theorems.

Theorem 5 (Dydak [21]). If XτK1 and Y τK2, then (X ∪ Y )τ(K1 ∗K2).

Corollary 6.1 ([21]). dimR(X ∪ Y ) ≤ dimRX + dimRY + 1 for every ring with
unity R.

Theorem 6 (Olszewski [18]). For every separable metric space W and every count-
able complex K with WτK there is a completion W̄ with the same property W̄ τK.

Proposition 6.2. For every separable metric space W and every compactum C
with dim(W × C) ≤ n there is a completion W̄ with dim(W̄ × C) ≤ n.

Proof. We assume that W lies in the Hilbert cube Q, and we find a Gδ extension
W̄ with the required property. Let π : Q × C → Q be the projection. By the
completion theorem for the covering dimension there is a Gδ-extension H of W ×C
in Q×C with dimH ≤ n. Then H is the intersection

⋂
Oi of open sets Oi. Define

O′i = Q− π((Q× C)−Oi). Then we define W̄ =
⋂
O′i.

Proposition 6.3. For every subset Y ⊂ Z of a compact metric space Z there is a
Gδ-set Ȳ ⊃ Y such that dim(Ȳ × (Z − Ȳ )) ≤ dim(Y × (Z − Y )).

Proof. Let Ȳ0 ⊃ Y be a Gδ-extension. Then Z − Ȳ0 =
⋃
F i0 is a countable union of

compacta. Using Proposition 12, we define a Gδ-extension Ȳ1 ⊃ Y of Y such that
dim(Ȳ1×F i0) = dim(Y ×F i0) for all i. Then consider a countable union of compacta⋃
F i1 = Z−Ȳ1 and define Ȳ2 with dim(Ȳ2×F i1) = dim(Y ×F i1), and so on. We define

Ȳ =
⋂
Ȳk. Let C ⊂ Z − Ȳ be a compactum. Note that C ⊂

⋃
(Z − Ȳk) =

⋃
F ik.

Then
dim(Ȳ × C) ≤ max{dim(Ȳ × (C ∩ F ik))} ≤ max{dim(Ȳ × F ik)}

≤ max{dim(Ȳk+1 × F ik)}=max{dim(Y × F ik)}≤dim(Y × (Z − Y )).

Then by the countable union theorem [34]

dim(Ȳ ×(Z−Ȳ )) ≤ max{dim(Ȳ ×C) | C ⊂ Z−Ȳ is compact} ≤ dim(Y ×(Z−Y )).

Proof of Theorem B. 1) In view of Proposition 6.3 we may assume that X ∈ Fσ.
By Proposition 6.1 there is a field F ∈ σ such that dim(X∪Y ) ≤ dimF (X∪Y )+1.
By Corollary 6.1

dimF (X ∪ Y ) + 1 ≤ dimFX + dimFY + 2.

The equality dimFX + dimFY = dimF (X × Y ) holds if one of the factors is σ-
compact. The inequality dim(X × Y ) ≥ dimF (X × Y ) completes the proof.

2) By Proposition 11 we may assume that dim(X ∪ Y ) = dimF (X ∪ Y ); then
the inequality follows by the same argument.

3-4) Assume that X is an Fσ. By Theorem 6 there is a Gδ-set X̄ ⊃ X of
dimGX̄ = dimGX for every G ∈ σ. Apply the argument of the proof of 1) and 2)
to the union Z = (Z − X̄) ∪ X̄ to obtain inequalities

dimZ ≤ dimF (Z − X̄) + dimF X̄ + 2

and, in the case of the first type Z:

dimZ ≤ dimF (Z − X̄) + dimF X̄ + 1.
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Note that dimF (Z−X̄)+dimF X̄ = dimF (Z−X̄)+dimFX . Since Z−X̄ is an Fσ,
the countable union theorem implies that there exists a compactum Y ′ ⊂ Z − X̄
with dimF (Z − X̄) = dimF Y

′. Similarly there is a compact subset X ′ ⊂ X with
dimFX

′ = dimFX . Then

dimF (Z − X̄) + dimFX = dimFY
′ + dimFX

′

= dimF (Y ′ ×X ′) ≤ dim(Y ′ ×X ′).
Then the inequalities 3-4) follow.

Proof of Theorem C. We fix a prime p and define three dimensional functions D1,
D2 and D by setting D1(Zp) = D1(Z(p)) = D1(Q) = 2, D1(Zp∞) = D1(G) = 1
for all other G ∈ σ; D2(Z(p)) = 2, D2(Zp) = D2(Zp∞) = D2(Q) = D2(G) = 1
for all other G ∈ σ; and D(Z(p)) = 5, D(Zp) = D(Zp∞) = 4, D(Q) = D(G) = 3.
By the realization theorem [20] there is a compactum Z with DZ = D. Using the
formulas of Section 3 we can compute that D1[+]D2(Z(p)) = 3. Let us consider the
join M = K(D1)∗K(D2) of complexes K(D1) and K(D2) defined in Section 4. By
Proposition 4.1 the complex M is e-equivalent to a complex

∨
G∈σK(G,nM (G)).

Since K(D1) ∗K(D2) is itself homotopy equivalent to Σ(K(D1)∧K(D2)), we have

nM = nK(D1)∧K(D2)(G) + 1.

The computations of Proposition 4.2 show that nM (G) ≥ D(G) for all G ∈ σ.
Therefore the property ZτM holds. By Theorem 3 there are subsets X,Y ⊂ Z
such that X ∈ Fσ, Y = Z − X , XτK(D1) and Y τK(D2). For any compacta
X ′ ⊂ X and Y ′ ⊂ Y we have the inequalities DX′ ≤ D1 and DY ′ ≤ D2. Hence
dim(X ′×Y ′) ≤ 3. Since Z is 5-dimensional, we have 5 = dimZ > dim(X ′×Y ′)+1.

Remark. The proof of Theorem C shows that the extension type inequality K(D1)∧
K(D2) ≤ K(D1[+]D2) of Proposition 4.3 can be strict.

Still it is not clear whether the inequality dim(X ∪ Y ) ≤ dim(X × Y ) + 1 holds
for the second type of compacta Z = X ∪ Y . Theorem C demonstrates that even
if it does, its proof cannot be based only on the dimension theory of the product
of compacta. For non-compact factors a corresponding dimension theory of the
product does not exist (see an example in [26]). A related question is due to E.V.
Ščepin: Let a topological space Z = X ∪ Y be a union of two subspaces X and Y ,
is always the dimension of the join X ∗ Y greater than or equal to the dimension
of the union X ∪ Y = Z?
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