Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The Lipschitz continuity of the distance function to the cut locus

Authors: Jin-ichi Itoh and Minoru Tanaka
Journal: Trans. Amer. Math. Soc. 353 (2001), 21-40
MSC (2000): Primary 53C22; Secondary 28A78
Published electronically: August 3, 2000
MathSciNet review: 1695025
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Let $N$ be a closed submanifold of a complete smooth Riemannian manifold $M$ and $U\mbox{{$\nu$ }}$ the total space of the unit normal bundle of $N$. For each $v \in U\mbox{{$\nu$ }}$, let $\rho(v) $ denote the distance from $N$ to the cut point of $N$ on the geodesic $\gamma_v$ with the velocity vector $\dot\gamma_v(0)=v.$ The continuity of the function $\rho$ on $U\mbox{{$\nu$ }}$ is well known. In this paper we prove that $\rho$ is locally Lipschitz on which $\rho$is bounded; in particular, if $M$ and $N$ are compact, then $\rho$ is globally Lipschitz on $U\mbox{{$\nu$ }}$. Therefore, the canonical interior metric $\delta$ may be introduced on each connected component of the cut locus of $N,$ and this metric space becomes a locally compact and complete length space.

References [Enhancements On Off] (What's this?)

  • 1. W. Ballmann, Lectures on spaces of nonpositive curvature, Birkhäuser, Basel-Boston-Berlin, 1995. MR 97a:53053
  • 2. Y. Burago, M. Gromov and G. Perel'man, A. D. Alexandrov spaces with curvature bounded below, Russian Math. Surveys, 47 (1992), no. 2, 1-58. MR 93m:53035
  • 3. H. Busemann, The geometry of geodesics, Acad. Press, New York-San Francisco-London, 1955. MR 17:779a
  • 4. I. Chavel, Riemannian Geometry : A Modern Introduction, Cambridge University Press, 1993. MR 95j:53001
  • 5. J. Cheeger, Critical points of distance functions and applications to geometry, Geometric Topology: Recent Developments, Lecture Notes in Math., no.1504, Springer-Verlag, 1992,1-38. MR 94a:53075
  • 6. K.J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, 1985. MR 88d:28001
  • 7. H. Gluck and D. Singer, Scattering of geodesic fields, I, Ann. of Math. 108 (1978) 347-372. MR 80c:53046
  • 8. P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964) 705-727. MR 30:3435
  • 9. J.J. Hebda, The regular focal locus, J. of Differential Geometry 16 (1981) 421-429. MR 83j:53049
  • 10. J.J. Hebda, Parallel translation of curvature along geodesics, Trans. of Amer. Math. Soc. 299 (1987) 559-572. MR 88d:53035
  • 11. J.J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. of Differential Geometry 40 (1994) 621-642. MR 95m:53046
  • 12. L. Hörmander, The analysis of linear partial differential operators I, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1983. MR 85g:35002a
  • 13. J. Itoh, The length of a cut locus in a surface and Ambrose's problem, J. of Differential Geometry 43 (1996) 642-651. MR 97i:53038
  • 14. J. Itoh and M. Tanaka, The dimension of a cut locus on a smooth Riemannian manifold, Tohoku Math. J. (2) 50 (1998), 571-575. MR 99k:53068
  • 15. J. Milnor, Morse theory, Ann. of Math. Studies No.51, Princeton Univ. Press, 1963. MR 29:634
  • 16. F. Morgan, Geometric measure theory, A beginner's guide, Acad. Press 1988. MR 89f:49036
  • 17. M. Morse, The calculus of variations in the large, vol.18, Amer. Math. Soc.,1966. MR 98f:58070 (reprint)
  • 18. Y. Otsu and T. Shioya The Riemannian structure of Alexandrov spaces, J. Differential Geometry 39 (1994) 629-658. MR 95e:53862
  • 19. T. Sakai, On the structure of cut loci in compact Riemannian symmetric spaces, Math. Ann. 235(1978)129-148. MR 58:18272
  • 20. T. Sakai, Riemannian Geometry, Translation of Mathematical Monographs, vol.149, Amer. Math. Soc.,1996. MR 97f:53001
  • 21. K. Shiohama, An introduction to the geometry of Alexandrov spaces Lecture Notes series No.8, Research Inst. of Math. Global Analysis Research Center, Seoul National Univ.,1992. MR 96c:53064
  • 22. K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Séminaires & Congrès, Collection SMF No.1, Actes de la table ronde de Géometrié différentielle en l'honneur Marcel Berger, (1996), 531-560. MR 98a:53062
  • 23. M. Takeuchi, On conjugate and cut loci of compact symmetric spaces I, II, Tsukuba Math. J. 2(1978), 25-68; 3(1979), 1-29. MR 80d:53033; MR 80k:53082; MR 84g:53078
  • 24. F.Treves, A new method of proof of the subelliptic estimates, Comm. Pure Appl. Math. 24 (1971) 71-115. MR 44:7385
  • 25. F.W.Warner, The conjugate locus of a Riemannian manifold, Amer. J. of Math. 87 (1965) 575-604. MR 34:8344
  • 26. A. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. 87 (1968) 29-41. MR 36:4486
  • 27. J.H.C.Whitehead, On the covering of a complete space by the geodesics through a point, Ann. of Math. 36 (1935) 679-704.
  • 28. R.L. Wheeden and A. Zygmund, Measure and integral, Marcel Dekker, New York, 1977. MR 58:11295

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C22, 28A78

Retrieve articles in all journals with MSC (2000): 53C22, 28A78

Additional Information

Jin-ichi Itoh
Affiliation: Faculty of Education, Kumamoto University, Kumamoto 860-8555 Japan

Minoru Tanaka
Affiliation: Department of Mathematics, Tokai University, Hiratsuka 259-1292, Japan

Received by editor(s): October 14, 1998
Received by editor(s) in revised form: April 13, 1999
Published electronically: August 3, 2000
Additional Notes: Supported in part by a Grant-in-Aid for Scientific Research from The Ministry of Education, Science, Sports and Culture, Japan
Article copyright: © Copyright 2000 American Mathematical Society