## On modules of finite upper rank

HTML articles powered by AMS MathViewer

- by Dan Segal PDF
- Trans. Amer. Math. Soc.
**353**(2001), 391-410 Request permission

## Abstract:

For a group $G$ and a prime $p$, the upper $p$-rank of $G$ is the supremum of the sectional $p$-ranks of all finite quotients of $G$. It is unknown whether, for a finitely generated group $G$, these numbers can be finite but unbounded as $p$ ranges over all primes. The conjecture that this cannot happen if $G$ is soluble is reduced to an analogous ‘relative’ conjecture about the upper $p$-ranks of a ‘quasi-finitely-generated’ module $M$ for a soluble minimax group $\Gamma$. The main result establishes a special case of this relative conjecture, namely when the module $M$ is finitely generated and the minimax group $\Gamma$ is abelian-by-polycyclic. The proof depends on generalising results of Roseblade on group rings of polycyclic groups to group rings of soluble minimax groups. (If true in general, the above-stated conjecture would imply the truth of Lubotzky’s ‘Gap Conjecture’ for subgroup growth, in the case of soluble groups; the Gap Conjecture is known to be false for non-soluble groups.)## References

- Christopher J. B. Brookes,
*Ideals in group rings of soluble groups of finite rank*, Math. Proc. Cambridge Philos. Soc.**97**(1985), no. 1, 27–49. MR**764490**, DOI 10.1017/S0305004100062551 - Kenneth A. Brown,
*The Nullstellensatz for certain group rings*, J. London Math. Soc. (2)**26**(1982), no. 3, 425–434. MR**684556**, DOI 10.1112/jlms/s2-26.3.425 - J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal,
*Analytic pro-$p$-groups*, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR**1152800** - Arun Vinayak Jategaonkar,
*Integral group rings of polycyclic-by-finite groups*, J. Pure Appl. Algebra**4**(1974), 337–343. MR**344345**, DOI 10.1016/0022-4049(74)90013-9 - L. G. Kovács,
*On finite soluble groups*, Math. Z.**103**(1968), 37–39. MR**223458**, DOI 10.1007/BF01111284 - Alexander Lubotzky and Avinoam Mann,
*Residually finite groups of finite rank*, Math. Proc. Cambridge Philos. Soc.**106**(1989), no. 3, 385–388. MR**1010362**, DOI 10.1017/S0305004100068110 - Alexander Lubotzky, Avinoam Mann, and Dan Segal,
*Finitely generated groups of polynomial subgroup growth*, Israel J. Math.**82**(1993), no. 1-3, 363–371. MR**1239055**, DOI 10.1007/BF02808118 - Alexander Lubotzky, László Pyber, and Aner Shalev,
*Discrete groups of slow subgroup growth*. part B, Israel J. Math.**96**(1996), no. part B, 399–418. MR**1433697**, DOI 10.1007/BF02937313 - Andrea Lucchini,
*A bound on the number of generators of a finite group*, Arch. Math. (Basel)**53**(1989), no. 4, 313–317. MR**1015993**, DOI 10.1007/BF01195209 - Avinoam Mann and Dan Segal,
*Uniform finiteness conditions in residually finite groups*, Proc. London Math. Soc. (3)**61**(1990), no. 3, 529–545. MR**1069514**, DOI 10.1112/plms/s3-61.3.529 - Avinoam Mann and Dan Segal,
*Subgroup growth: some current developments*, Infinite groups 1994 (Ravello), de Gruyter, Berlin, 1996, pp. 179–197. MR**1477175** - Masayoshi Nagata,
*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0155856** - F. E. Ulrich,
*The problem of type for a certain class of Riemann surfaces*, Duke Math. J.**5**(1939), 567–589. MR**48** - Derek J. S. Robinson,
*On the cohomology of soluble groups of finite rank*, J. Pure Appl. Algebra**6**(1975), no. 2, 155–164. MR**382480**, DOI 10.1016/0022-4049(75)90004-3 - J. E. Roseblade,
*Group rings of polycyclic groups*, J. Pure Appl. Algebra**3**(1973), 307–328. MR**332944**, DOI 10.1016/0022-4049(73)90034-0 - D. Segal,
*On the group rings of abelian minimax groups*, J. Algebra, to appear. - —,
*On the finite images of infinite groups*, Proc. Conference on Infinite Groups, Bielefeld 1999, to appear. - —,
*The finite images of finitely generated groups*, Proc. London Math. Soc., to appear.

## Additional Information

**Dan Segal**- Affiliation: All Souls College, Oxford OX1 4AL, United Kingdom
- Email: dan.segal@all-souls.ox.ac.uk
- Received by editor(s): March 3, 1999
- Received by editor(s) in revised form: June 25, 1999
- Published electronically: September 13, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 391-410 - MSC (2000): Primary 20C07, 20F16, 20E07
- DOI: https://doi.org/10.1090/S0002-9947-00-02612-X
- MathSciNet review: 1707703