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UNIQUENESS OF SOLUTION TO
A FREE BOUNDARY PROBLEM FROM COMBUSTION

C. LEDERMAN, J. L. VÁZQUEZ, AND N. WOLANSKI

Abstract. We investigate the uniqueness and agreement between different
kinds of solutions for a free boundary problem in heat propagation that in
classical terms is formulated as follows: to find a continuous function u(x, t) ≥
0, defined in a domain D ⊂ RN × (0, T ) and such that

∆u+
∑

ai uxi − ut = 0 in D ∩ {u > 0}.

We also assume that the interior boundary of the positivity set, D∩∂{u > 0},
so-called free boundary, is a regular hypersurface on which the following con-
ditions are satisfied:

u = 0, −∂u/∂ν = C.

Here ν denotes outward unit spatial normal to the free boundary. In addition,
initial data are specified, as well as either Dirichlet or Neumann data on the
parabolic boundary of D. This problem arises in combustion theory as a limit
situation in the propagation of premixed flames (high activation energy limit).

The problem admits classical solutions only for good data and for small
times. Several generalized concepts of solution have been proposed, among
them the concepts of limit solution and viscosity solution. We investigate
conditions under which the three concepts agree and produce a unique solution.

Introduction

In this paper we deal with a free boundary problem in heat propagation which in
its classical form can be formulated as follows: given a domain D ⊂ RN×(0, T ), the
problem consists in finding a nonnegative function u(x, t), defined and continuous
in D, which satisfies the equation

∆u+
∑

ai uxi − ut = 0

in the positivity set D∩{u > 0}. We also assume that the interior boundary of the
positivity set, Γ = D ∩ ∂{u > 0}, so-called free boundary, is a regular hypersurface
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on which the following conditions are satisfied

u = 0, −∂u
∂ν

=
√

2M.

Here M is a positive constant, and ν denotes outward unit spatial normal to the
free boundary Γ. In addition, initial and boundary conditions have to be prescribed
on the parabolic boundary of D. Thus, if the domain is a space-time cylinder,
D = Ω× (0, T ), we prescribe initial data at t = 0

u(x, 0) = u0(x) for x ∈ Ω,

as well as boundary conditions of Dirichlet or Neumann type on the lateral bound-
ary, ∂Ω × (0, T ). We will refer to this free boundary problem as problem P . Let
us recall that classical solutions to problem P in one space dimension are relatively
easy to construct; cf. [Ve]. The problem is much more difficult in several space
dimensions; cf. [M], [AG]. In general, classical solutions exist only locally in time,
since singularities can arise in finite time. Classical solutions are constructed in
[GHV] under the assumption of radial symmetry.

Problem P arises in several contexts and is currently the object of active in-
vestigation; cf. the survey paper [V]. The most important motivation to date has
come from combustion theory, where it appears as a limit situation in the descrip-
tion of the propagation of premixed equi-diffusional deflagration flames, which after
convenient simplifications are reduced to solving the equation

∆uε +
∑

ai u
ε
xi − u

ε
t = βε(uε),(Pε)

for the variable uε(x, t) = Tf − T (x, t), with T the temperature of the reactive
mixture and Tf the flame temperature, so that T ≤ Tf and uε ≥ 0. The function
βε(u) represents the exothermic chemical reaction and has accordingly a number of
properties: it is a nonnegative and Lipschitz continuous function which is positive
in an interval (0, θε) near u = 0 and vanishes otherwise (i.e., reaction occurs only
in the range Tf − θε < T < Tf). The parameter ε > 0 is essentially the inverse
of the activation energy of the chemical reaction and plays an important role in
the analysis. Finally, the integral

∫
βε(u)du = M is fixed. The vector (a1, · · · , aN )

represents the transport velocity of the reactive mixture, which is sometimes taken
to be zero in the quoted literature. For further details on the model see [BuL], [W],
[BL].

The important point in order to establish a connection of the two problems P
and Pε is that in the latter ε is in many cases a very small parameter so that
in the limit ε → 0 (so-called limit of high activation energy) the support of the
function βε concentrates at u = 0. The relevant limit happens when we let ε→ 0,
and consequently θε → 0, while keeping a constant integral M . The function βε
tends then to a Dirac delta, Mδ(u). In this way the reaction zone where βε acts is
reduced to a surface, the flame front, and the free boundary problem arises. The
fact that M > 0 ensures that a nontrivial combustion process takes place so that a
non-empty free boundary actually appears.

The study of the limit Pε → P as ε→ 0 was proposed in the 1930’s by Zeldovich
and Frank-Kamenetski [ZF] and has been much discussed in the combustion liter-
ature. Although the convergence of the most relevant propagation modes, i.e., the
traveling waves was already discussed by Zeldovich and Frank-Kamenetski, and has
made enormous progress, a rigorous mathematical investigation of the convergence
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of general solutions is still in progress. Berestycki and his collaborators have rigor-
ously studied the convergence problem for traveling waves and, more generally in
the elliptic stationary case; cf. [BCN] and its references. See also [LW]. The study
of the limit in the general evolution case for the heat operator has been performed
in [CV] and extended in [C1], [C2], [CLW1] and [CLW2] to the two-phase case,
where no sign restriction on u is made.

In any case, the validity of the free boundary model for general curved geometries
is still under debate with many open problems waiting to be settled. Various
concepts of generalized solution have been introduced in the literature in order to
justify the limit process and to obtain solutions for general data. Thus, when we
perform the approximation process Pε and pass to the limit ε → 0, this gives rise
to a kind of solutions to problem P , called limit solutions. In [CV] a concept of
weak solution is introduced to clarify the nature of the limit solutions. On the other
hand, the concept of viscosity solution for problem P was introduced in [CLW2] and
[LW] with the same purpose and the two-phase version of this problem is studied.

Let us recall that there exist other applications, approaches and solution concepts
for which we refer to [V]. For the case of the heat operator, [HH] discusses the
existence of generalized solutions to P based on an elliptic-parabolic formulation
in one space dimension, and such an approach is extended in [GHV] to several
dimensions under conditions of radial symmetry. Such solutions are shown to be
classical until a singularity forms. The singularity is then classified.

As a precedent to this work we can quote the convergence results for traveling
waves, starting from [BNS]. In [GHV] the classical solutions obtained by the elliptic-
parabolic approach are shown to coincide with the limit solutions of [CV]. Strong
conditions are imposed, in particular radial symmetry in space. See [Gl] and [BoG]
for recent work.

1. Main result and outline of the paper

It is the purpose of this work to contribute to the questions of unique character-
ization of the solution of the free-boundary problem P and the consistency of the
different solution concepts. Our results can be summarized as saying that, under
suitable assumptions on the domain, the reaction function βε and on the initial and
boundary data, if a classical solution of problem P exists in a certain time interval,
then it is at the same time the unique classical solution, the unique limit solution
and also the unique viscosity solution in that time interval.

For definiteness we take as spatial domain a cylinder of the form Ω = R×Σ with
Σ ⊂ RN−1 a smooth domain, or a semi-cylinder, and we put homogeneous Neumann
conditions on the lateral boundary R × ∂Σ. This is a usual choice in combustion
problems. Meirmanov [M] constructs classical solutions in such domains in two
dimensions (with periodic lateral conditions, however). It is worth recalling in this
context that problem P is not globally well-posed for general geometries where
the solutions do develop singularities; see examples and discussion in [V]. We
require monotonicity of the initial data in the direction of the cylinder axis. On
the contrary, we make no requirement of monotonicity of the solution in time. In
the family of problems Pε we assume that the functions βε are defined by scaling
of a single function β : R→ R satisfying:

(i) β is a Lipschitz continuous function,
(ii) β > 0 in (0, 1) and β ≡ 0 otherwise,
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(iii)
∫
β(s)ds = M .

We then define

βε(s) =
1
ε
β(
s

ε
).(1.1)

The coefficients ai in the operator are assumed to be independent of x1, the direction
of the cylinder axis, and belong to Cα,

α
2 (Σ× [0, T ]).

Our result shows in particular that there is a unique limit solution independently
of the choice of the function β. Moreover, we actually prove that the limit exists
for any approximation of the initial datum.

An outline of the contents is as follows. In Section 2 we give precise definitions of
the classical and viscosity solutions and prove a first consistency result (Propositions
2.1 and 2.2). In Section 3 we prove that, under certain assumptions on the domain
and on the initial datum, a classical solution to problem P is the unique classical
solution and also the unique viscosity solution (Theorems 3.1 and 3.2 and Corollary
3.1). In Section 4 we prove some auxiliary results. In Section 5 we prove that a
classical subsolution to problem P is the uniform limit of a family of subsolutions to
problem Pε and we prove the analogous result for supersolutions. Finally, in Section
6 we show that, under similar assumptions as in Section 3, a classical solution to
problem P is the uniform limit of any family of solutions to problem Pε (Theorems
6.1 and 6.2). We include an Appendix at the end of the paper with a result on
parabolic semilinear mixed problems in noncylindrical space-time domains, that is
used throughout the paper.

Notation. Throughout the paper N will denote the spatial dimension, Σ ⊂ RN−1

a bounded C3 domain with unit exterior normal η′ and η = (0, η′) will denote the
unit exterior normal to R× Σ. In addition, the following notation will be used:

For any x0 ∈ RN , t0 ∈ R and τ > 0, Bτ (x0) := {x ∈ RN/|x − x0| < τ} and
Bτ (x0, t0) := {(x, t) ∈ RN+1/|x− x0|2 + |t− t0|2 < τ2}.

When necessary, we will denote points in RN by x = (x1, x
′), with x′ ∈ RN−1.

Given a function v, we will denote v+ = max(v, 0).
The symbols ∆ and ∇ will denote the corresponding operators in the space

variables; the symbol ∂p applied to a domain will denote parabolic boundary.
Let us define the Hölder spaces we are going to use. Let m ≥ 0 be an integer and

0 < α < 1. For a space-time cylinder Q = Ω × (0, T ) ⊂ RN+1, Cm+α,m+α
2 (Q) is

the parabolic Hölder space denoted by Hm+α,m+α
2 (Q) in [LSU]. If D ⊂ RN+1

is a general domain, then Cm+α,m+α
2 (D) will denote the space of functions in

Cm+α,m+α
2 (Q) for every space-time cylinder Q ⊂ D. If D is bounded, we will

say that u ∈ Cm+α,m+α
2 (D) if there exist a domain D′ with D ⊂ D′ and a function

u′ ∈ Cm+α,m+α
2 (D′) such that u = u′ in D. If D is unbounded, we will say that

u ∈ Cm+α,m+α
2 (D) if u ∈ Cm+α,m+α

2 (D′) for every bounded domain D′ ⊂ D. The
space C1(D) is defined in an analogous way.

In addition, M will denote a positive constant that will remain fixed throughout
the paper.

Given a domain D ⊂ RN+1, we will write

Lu := ∆u+
∑

ai uxi − ut, ai ∈ L∞(D) ∩ Cα,α2 (D).(1.2)

In case D = Ω× (0, T ) with Ω = R×Σ or Ω = (0,+∞)×Σ, we will assume that
ai are independent of x1, that is, ai = ai(x′, t), ai ∈ Cα,

α
2 (Σ× [0, T ]).
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Finally, we will say that u is supercaloric if Lu ≤ 0, and u is subcaloric if Lu ≥ 0.

2. Preliminaries on classical and viscosity solutions

In this section we give precise definitions of the classical and viscosity solutions
and derive some consequences. In particular, we prove that in the situations con-
sidered in this paper a classical solution is a viscosity solution.

Definition 2.1. Let Q = Ω × (T1, T2), with Ω ⊂ RN a domain, be a space-time
cylinder. Let v be a continuous function in Q. Then v is called a classical subsolu-
tion (supersolution) to P in Q if v ≥ 0 in Q and

(i) Lv ≥ 0 (≤ 0) in Q ∩ {v > 0};
(ii) v ∈ C1({v > 0}),∇v ∈ Cα,α2 ({v > 0});
(iii) for any (x, t) ∈ {v = 0} ∩ ∂{v > 0}, we have ∇v+(x, t) 6= 0 and

−∂v
+

∂ν
≥
√

2M (≤
√

2M),

where ν := − ∇v+

|∇v+| . That is,

|∇v+| ≥
√

2M (≤
√

2M).

Observe that the set {v = 0} ∩ ∂{v > 0} is a closed subset of Q.
We say that v is a classical solution to P in Q if it is both a classical subsolution

and a classical supersolution to P .

Definition 2.2. Let u ∈ C(Q); u is called a viscosity subsolution (supersolution)
to P in Q if u ≥ 0 in Q and, for every space-time subcylinder Q′ ⊂ Q and for every
v bounded classical supersolution (subsolution) to P in Q′, with Q′ ∩ ∂{v > 0}
bounded,

u ≤ v (u ≥ v) on ∂pQ,

v > 0 on {u > 0} ∩ ∂pQ′,
(u > 0 on {v > 0} ∩ ∂pQ′)

implies that u ≤ v (u ≥ v) in Q′.
The function u is called a viscosity solution to P if it is both a viscosity super-

solution and a viscosity subsolution to P .

We can now prove the consistency between both concepts of solution.

Proposition 2.1. If u is a bounded classical supersolution (subsolution) to P in
Q with Q ∩ ∂{u > 0} bounded, then u is a viscosity supersolution (subsolution) to
P in Q.

Proof. Let Q′ ⊂ Q be the cylinder Q′ = Ω′×(t1, t2) and let v be a bounded classical
subsolution to P in Q′ with Q′ ∩ ∂{v > 0} bounded, satisfying

u ≥ v on ∂pQ′

and

u > 0 on {v > 0} ∩ ∂pQ′.
We will show that u ≥ v in Q′.

If {v > 0} ∩ ∂pQ′ = ∅, then v = 0 on ∂pQ
′ and therefore v = 0 in Q′. Thus,

u ≥ v in Q′.
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If {v > 0} ∩ ∂pQ′ 6= ∅, it follows that u > 0 in {v > 0} ∩Q′ for t1 ≤ t < τ , for
some τ > t1. This is a consequence of the continuity of u and v, and the fact that
the free boundaries of u and v are bounded. It is not hard to see that having u > 0
in {v > 0} ∩Q′ for t1 ≤ t < s implies u ≥ v in Q′ ∩ {t1 ≤ t ≤ s}. We set

t0 = sup{s : t1 < s < t2 such that u > 0 in {v > 0} ∩Q′ ∩ {t1 ≤ t < s}},

and we will get to a contradiction by assuming t0 < t2.
We have t0 > t1 and u ≥ v in Q′ ∩ {t1 ≤ t ≤ t0}. In addition, there exists a

sequence (xn, tn) → (x0, t0) ∈ Q′ such that u(xn, tn) = 0, (xn, tn) ∈ {v > 0} ∩Q′.
Then, u(x0, t0) = v(x0, t0) = 0 and (x0, t0) ∈ Q′ ∩ ∂{v > 0}. Since v is a classical
subsolution to P , there exists a sequence yn → x0 such that 0 < v(yn, t0) ≤
u(yn, t0), so that we have proved

u ≥ v in Q′ ∩ {t1 ≤ t ≤ t0},
(x0, t0) ∈ Q′ ∩ ∂{u > 0} ∩ ∂{v > 0}.

That is, the function u−v is positive and supercaloric in {v > 0}∩Q′∩{t1 < t ≤ t0}.
From the definition of classical subsolution and supersolution we deduce that

∇v+(x0, t0)
|∇v+(x0, t0)| =

∇u+(x0, t0)
|∇u+(x0, t0)| = −ν,

and from Hopf’s principle (see [KH])

−u+
ν (x0, t0) > −v+

ν (x0, t0).

But there holds that
√

2M ≥ −u+
ν (x0, t0) and − v+

ν (x0, t0) ≥
√

2M,

which gives a contradiction and proves the result.

Definition 2.3. Let Ω ⊂ RN be a domain and let Q = Ω× (0, T ). Let ΓN be an
open C1 subset of ∂Ω and let ∂NQ = ΓN × (0, T ).

Let u ∈ C(Q). We say that u is a viscosity solution to P in Q with ∂u
∂η = 0 on

∂NQ, if u ≥ 0 and there holds:
For every space-time subcylinder Q′ ⊂ Q and for every v bounded classical

supersolution (subsolution) to P in Q′, with Q′ ∩ ∂{v > 0} bounded, such that
∂v
∂η = 0 on ∂pQ′ ∩ ∂NQ,

u ≤ v (u ≥ v) on ∂pQ
′ \ ∂NQ,

v > 0 on {u > 0} ∩ ∂pQ′ \ ∂NQ,(
u > 0 on {v > 0} ∩ ∂pQ′ \ ∂NQ

)
implies that u ≤ v (u ≥ v) in Q′.

Proposition 2.2. Let Ω = R × Σ (or (0,+∞)× Σ), Q = Ω × (0, T ) and ∂NQ =
R× ∂Σ× (0, T ) (or ∂NQ = (0,+∞)× ∂Σ× (0, T )).

Let u be a bounded classical solution to P in Q with Q ∩ ∂{u > 0} bounded and
∂u
∂η = 0 on ∂NQ. Then u is a viscosity solution to P in Q with ∂u

∂η = 0 on ∂NQ.
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Proof. Let Q′ ⊂ Q be the subcylinder Q′ = Ω′ × (t1, t2) and let v be a bounded
classical subsolution to P in Q′, with Q′ ∩ ∂{v > 0} bounded, such that ∂v

∂η = 0 on
∂pQ

′ ∩ ∂NQ, satisfying

u ≥ v on ∂pQ′ \ ∂NQ
and

u > 0 on {v > 0} ∩ ∂pQ′ \ ∂NQ.
We will show that u ≥ v in Q′.

We will proceed as in Proposition 2.1. In fact, we define t0 in the same way and
there holds that t0 > t1.

If t0 < t2, proceeding in a similar way as in Proposition 2.1, we find a point
(x0, t0) such that u(x0, t0) = 0 and

u ≥ v in Q′ ∩ {t1 ≤ t ≤ t0},
(x0, t0) ∈ ∂{v > 0} ∩

(
Q′ ∪ (∂pQ′ ∩ ∂NQ)

)
.

If (x0, t0) ∈ Q′ we proceed as in Proposition 2.1 to see that (x0, t0) ∈ ∂{u > 0}
and we conclude the proof exactly as the one of Proposition 2.1.

If (x0, t0) ∈ ∂NQ, necessarily there exists a neighborhood N of (x0, t0) such that
N∩∂pQ′ ⊂ ∂NQ and thus, as in Proposition 2.1 we deduce that (x0, t0) ∈ ∂{u > 0}.

Then, it follows that the function u− v is positive and supercaloric in R = {v >
0} ∩Q′ ∩N ∩ {t1 < t ≤ t0} and ∂(u−v)

∂η = 0 on {v > 0} ∩ ∂NQ∩N ∩ {t1 < t ≤ t0}.
Applying Proposition A.1 and Remark A.1 in the Appendix, we see that we can
proceed as in the case in which (x0, t0) ∈ Q′, but considering instead of the operator
L, a more general uniformly parabolic operator (see Proposition A.1). And again,
the contradiction follows from the application of the result in [KH].

Observation. The efficiency of the concept of viscosity solution depends on the
existence of a sufficient number of classical sub-, super- and solutions to serve as
test functions. We recall that, in the case of the heat operator (this is, ai ≡ 0), the
existence of classical solutions has been studied in [Ve], [M], [AG] and [GHV].

As an application of the definition we prove that viscosity subsolutions have the
property of finite propagation of the support.

Proposition 2.3. Let Ω ⊂ RN be a bounded domain, Q = Ω× (0, T ) and ai ≡ 0.
Given any viscosity subsolution u to P in Q which vanishes at time t = 0 in an
open ball Br(x0) ⊂ Ω and given r′ ∈ (0, r) there exists a small time τ > 0 such that
u vanishes in Br′(x0) for 0 < t < τ .

Proof. The result is true for classical solutions according to Definition 2.1. For a
viscosity subsolution u we only have to compare u with a suitable classical solution,
for a small time interval 0 ≤ t ≤ τ . For instance, with a radially-symmetric classical
solution v, corresponding to initial data v(x, 0) = f(|x−x0|) ≥ 0, such that f(s) = 0
for 0 ≤ s ≤ r− ε, f(s) = 2‖u‖L∞ for s ≥ r. By [GHV] this solution exists and thus
the conclusion follows.

In the next propositions we will show that, in the situations considered in this
paper, a classical solution has a bounded free boundary; and in particular, it is a
viscosity solution.
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Proposition 2.4. Let Ω = R × Σ, Q = Ω × (0, T ), ∂NQ = R × ∂Σ × (0, T ) and
∂DQ = ∂pQ \ ∂NQ.

Let u be a bounded classical solution to P in Q with ∂u
∂η = 0 on ∂NQ and

||u||
Cα,

α
2 (Q)

< ∞, such that u
∣∣
∂DQ

has a bounded, nonempty free boundary and

ux1 < 0 on {u > 0} ∩ ∂DQ.
Then Q ∩ ∂{u > 0} is bounded.

Proof. From the assumptions it follows that there exist c, K̄ > 0 such that u
∣∣
∂DQ

≥
c for x1 < −K̄ and u

∣∣
∂DQ

= 0 for x1 > K̄.
Let us first consider the case of the heat operator, i.e. ai ≡ 0, and let K = 2K̄.
On one hand we can see that there exists τ1 > 0 such that u(x, t) = 0 for x1 = K

and 0 ≤ t ≤ τ1. In fact, if not, there exist (xn, tn) with u(xn, tn) > 0, xn1 = K

and tn → 0. Then, there exists x0 with x0
1 = K such that (x0, 0) ∈ {u > 0}.

On the other hand, u(x0, 0) = 0. Thus, (x0, 0) ∈ {u = 0} ∩ ∂{u > 0} so that
|∇u+(x0, 0)| =

√
2M > 0. But u(x, 0) = 0 in a neighborhood of x0, which is a

contradiction.
On the other hand, there exists τ2 > 0 such that u(x, t) ≥ c

2 for x1 < −K
and 0 ≤ t ≤ τ2. In fact, this is true because u(x, 0) ≥ c for x1 < −K and
||u||

Cα,
α
2 (Q)

<∞.
It follows that Q ∩ ∂{u > 0} is bounded for 0 ≤ t ≤ τ = min{τ1, τ2} and

therefore, by Proposition 2.2, u is a viscosity solution to P in Q ∩ {t < τ} with
∂u
∂η = 0 on ∂NQ ∩ {t < τ}.

Let L = ||u||L∞(Q) and let

v−(x, t) = c

(
1− exp

{√2M
c

x1 +
2M
c2

t+
K
√

2M
c

})+

,

v+(x, t) = 2L

(
1− exp

{√2M
2L

x1 +
2M
4L2

t− K
√

2M
2L

− log 2
})+

.

There holds that v± are bounded classical solutions to P in Q with ∂v+
∂η = ∂v−

∂η = 0
on ∂NQ and bounded free boundaries, and

v−(x, 0) ≤ u(x, 0) ≤ v+(x, 0).

Moreover,

u > 0 on {v− > 0} ∩ {t = 0},
v+ > 0 on {u > 0} ∩ {t = 0}.

Therefore,

v−(x, t) ≤ u(x, t) ≤ v+(x, t) in Q ∩ {t ≤ τ}.
Let

t0 = sup
{
τ > 0 / v− ≤ u ≤ v+ in Q ∩ {t ≤ τ}

}
.

Let us see that t0 = T (in which case we deduce that Q ∩ ∂{u > 0} is bounded
and the proof is finished).

If not, we see that by continuity, v− ≤ u ≤ v+ in Q ∩ {t ≤ t0} and in particular
Ω ∩ ∂{x / u(x, t0) > 0} is bounded. Moreover, by proceeding as in the proof of
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Proposition 2.2 it can be seen that

u > 0 on {v− > 0} ∩ {t = t0},
v+ > 0 on {u > 0} ∩ {t = t0}.

In addition, since v−(x, t0) ≤ u(x, t0) ≤ v+(x, t0) there holds that there exist
c1,K1 > 0 such that u ≥ c1 for x1 < −K1, t = t0 and u = 0 for x1 > K1,
t = t0. Arguing as before, we can see that there exists t1 > t0 such that Q ∩ {t0 ≤
t ≤ t1} ∩ ∂{u > 0} is bounded and therefore, u is a viscosity solution to P in
Q ∩ {t0 < t < t1} with ∂u

∂η = 0 on ∂NQ ∩ {t0 < t < t1}.
We conclude that

v−(x, t) ≤ u(x, t) ≤ v+(x, t) in Q ∩ {t ≤ t1}

which contradicts the definition of t0. Therefore t0 = T and the proof is finished
for the case ai ≡ 0.

When ai 6≡ 0 we replace v−, v+ by w−, w+ defined by w−(x, t) =
v−(x1 +At, x′, t) and w+(x, t) = v+(x1 −At, x′, t), with A ≥ ||a1||L∞ .

The next propositions can be proved in a similar way as Proposition 2.4 (in the
proof of Proposition 2.6 we use Proposition 2.1 instead of Proposition 2.2).

Proposition 2.5. Let Ω = (0,+∞)×Σ, Q = Ω× (0, T ), ∂NQ = (0,+∞)× ∂Σ×
(0, T ) and ∂DQ = ∂pQ \ ∂NQ.

Let u be a bounded classical solution to P in Q with ∂u
∂η = 0 on ∂NQ, such that

u
∣∣
∂DQ

has a bounded, nonempty free boundary and ux1 < 0 on {u > 0} ∩ ∂DQ.
Assume that u(0, x′, t) > 0 for (x′, t) ∈ Σ× [0, T ]. Then Q∩∂{u > 0} is bounded.

Proposition 2.6. Let Ω = (0,+∞)× Σ, Q = Ω× (0, T ) and ∂DQ = ∂pQ.
Let u be a bounded classical solution to P in Q, such that u

∣∣
∂DQ

has a bounded,

nonempty free boundary and ux1 < 0 on {u > 0} ∩ ∂DQ.
Assume that u(0, x′, t) > 0 for (x′, t) ∈ Σ× [0, T ]. Then Q∩∂{u > 0} is bounded.
The same result holds if we let instead Ω = R×Σ and we assume that ||u||

Cα,
α
2 (Q)

<∞ (with no assumptions on u on {0} × Σ× [0, T ]).

3. Uniqueness of classical and viscosity solutions

In this section we show that, under suitable assumptions, a classical solution is
the unique viscosity solution to the initial and boundary value problem associated
to P and, in particular, it is the unique classical solution. This is done in Theorems
3.1 and 3.2 and Corollary 3.1. We also show comparison.

Theorem 3.1. Let Ω = (0,+∞)×Σ, Q = Ω×(0, T ), ∂NQ = (0,+∞)×∂Σ×(0, T )
and ∂DQ = ∂pQ \ ∂NQ.

Let u be a bounded classical solution to P in Q with ∂u
∂η = 0 on ∂NQ, such that

u
∣∣
∂DQ

has a bounded, nonempty free boundary and ux1 < 0 on {u > 0} ∩ ∂DQ.
Assume that u(0, x′, t) > 0 for (x′, t) ∈ Σ×[0, T ] with u(0, x′, t) ∈ C2,1(Σ×[0, T ]).
Let v ∈ C(Q) be a viscosity solution to P in Q with ∂v

∂η = 0 on ∂NQ.

If v = u on ∂DQ and {v > 0} ∩ ∂DQ = {u > 0} ∩ ∂DQ, then v = u in Q.
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Remark 3.1. Let u and v be as in the statement of Theorem 3.1. The condition
{v > 0}∩∂DQ = {u > 0}∩∂DQ implies that the free boundaries of u and v coincide
on ∂DQ and both start from Ω ∩ ∂{u(x, 0) > 0}.

A condition like this one is necessary in order to get the uniqueness result since
otherwise, the bounded solution of the heat equation in Q with homogeneous Neu-
mann datum on ∂NQ and with Dirichlet datum u on ∂DQ (which is a viscosity
solution to this problem) would be a counterexample when ai ≡ 0.

Proof of Theorem 3.1. Let us consider any v as in the statement of the theorem.
We will show that v = u in Q.

Let us first remark that u satisfies the assumptions of Proposition 2.5. Therefore,
Q ∩ ∂{u > 0} is bounded.

Let us fix δ > 0 small and define, for (x, t) ∈ Q,

uδ(x, t) = u(x1 + δ, x′, t).

Since u is a classical solution to P in Q, then u is a classical subsolution to P in Q
and the same happens with uδ. Also ∂uδ

∂η = 0 on ∂NQ. From our assumptions, it
follows that, for (x, t) on ∂DQ,

v(x, t) = u(x, t) ≥ u(x1 + δ, x′, t) = uδ(x, t).

That is,

v ≥ uδ on ∂DQ.

In addition, there holds that

v > 0 on {uδ > 0} ∩ ∂DQ.

Since v is a viscosity supersolution to P in Q with ∂v
∂η = 0 on ∂NQ, we obtain

v(x, t) ≥ uδ(x, t) = u(x1 + δ, x′, t) for (x, t) ∈ Q,
and letting δ → 0 we conclude that

v ≥ u in Q.

In order to show that u ≥ v in Q we proceed in the following way. We first
extend u to a neighborhood of x1 = 0 letting, in −µ ≤ x1 ≤ 0, (x′, t) ∈ Σ× [0, T ],

u(x1, x
′, t) = u(0, x′, t)− cx1 − kx2

1.

Here c > 0 is a constant such that ux1(0+, x′, t) ≤ −c for (x′, t) ∈ Σ× [0, T ], k is a
positive constant and µ > 0 is a small constant such that u > 0 in −µ ≤ x1 ≤ 0.

Then, u is continuous up to x1 = −µ and moreover, it is strictly decreasing in
−µ ≤ x1 ≤ 0 in the direction e1 if µ is chosen small enough. Also,

∂u

∂η
= 0 on {−µ ≤ x1 ≤ 0} × ∂Σ× (0, T ).

On the other hand, since u is smooth in −µ ≤ x1 ≤ 0 it follows that, if k is large
enough and µ is small, then

Lu ≤ 0 in {−µ < x1 < 0} × Σ× (0, T ).

If we now notice that ux1(0−, x′, t) ≥ ux1(0+, x′, t), we deduce that u is supercaloric
in {x1 > −µ} ∩ {u > 0}.
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Now consider, for 0 < δ < µ small and (x, t) ∈ Q,

uδ(x1, x
′, t) = u(x1 − δ, x′, t).

It is not hard to see that

uδ ≥ v on ∂DQ.

Let us show that uδ ≥ v in Q. To this effect let us choose a > δ such that uδ > 0
and v > 0 in [0, a]× Σ× [0, T ]. Then Lv = 0 in (0, a)× Σ× (0, T ) and ∂v

∂η = 0 on
(0, a) × ∂Σ × (0, T ) in the classical sense. This follows from Definition 2.3, using
the fact that v > 0 in this region.

In addition, there holds that uδ(x, 0) > v(x, 0) in [0, a]× Σ and therefore,

uδ > v in [0, a]× Σ× [0, τ ],

for some τ > 0.
Now let 0 < t0 < T be such that

uδ ≥ v in [0, a]× Σ× [0, t0].

We will show that if a > b > δ, then

uδ > v in [0, b]× Σ× [0, t0].(3.1)

In fact, uδ − v is supercaloric in (0, a)× Σ× (0, t0) and it is continuous up to the
boundary. We also know that uδ − v > 0 in {0} × Σ × [0, T ] by construction.
If we had uδ − v = 0 somewhere in (0, b] × Σ × (0, t0], we would contradict the
strong maximum principle. If, on the other hand, we had uδ− v = 0 somewhere on
(0, b]× ∂Σ× (0, t0], we would contradict the Hopf principle. Then, (3.1) is proved.

From the continuity of uδ and v it follows that

uδ > v in [0, b]× Σ× [0, t1]

for some t1 > t0.
Then, v is a viscosity solution to P in Q with ∂v

∂η = 0 on ∂NQ and uδ is a classical

solution to P in {x1 > b} ∩Q with ∂uδ

∂η = 0 on {x1 > b} ∩ ∂NQ satisfying

uδ ≥ v on {b} × Σ× (0, t1),

uδ ≥ v on (b,+∞)× Σ× {0},
uδ > 0 on {v > 0} ∩ ({t = 0} ∪ {x1 = b}) .

Therefore,

uδ ≥ v in [0,+∞)× Σ× [0, t1].

Let us now prove that uδ ≥ v in Q. If not, we let

t̄ = inf
{

0 ≤ t ≤ T / there exists (x, t) ∈ Q/uδ(x, t) < v(x, t)
}
.

The argument above implies, in particular, that uδ ≥ v if 0 ≤ t ≤ τ and therefore
0 < t̄ < T . From the definition of t̄ it follows that

uδ(x, t) ≥ v(x, t) for t ≤ t̄.

If we now let t0 = t̄ and proceed as above, we deduce that

uδ(x, t) ≥ v(x, t) for t ≤ t1,
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with t1 > t0 = t̄, a contradiction. Consequently, uδ ≥ v and thus, u ≥ v. The
theorem is proved.

For two classical solutions we have the following uniqueness result.

Corollary 3.1. Let Ω, Q, ∂NQ, ∂DQ and u as in Theorem 3.1. Let v be a bounded
classical solution to P in Q with ∂v

∂η = 0 on ∂NQ, such that v = u on ∂DQ. Then,
v = u in Q.

Proof. We first notice that {v > 0} ∩ ∂DQ = {u > 0} ∩ ∂DQ. Then, proceeding as
in Proposition 2.5 we deduce Q ∩ ∂{v > 0} is bounded. By Proposition 2.2, v is
the viscosity solution to P in Q with ∂v

∂η = 0 on ∂NQ and thus, from Theorem 3.1
we conclude that u = v in Q.

A Comparison Principle for bounded classical solutions follows from Proposi-
tion 2.2 if the free boundaries are bounded in Q and separated on ∂DQ. With a
monotonicity assumption on ∂DQ, we get a different comparison result.

Corollary 3.2. Let Ω, Q, ∂NQ, ∂DQ and u as in Theorem 3.1. Let v be a bounded
classical solution to P in Q with ∂v

∂η = 0 on ∂NQ, and such that Q ∩ ∂{v > 0} is
bounded. If v ≥ u on ∂DQ, there holds that v ≥ u in Q.

Proof. The proof follows the lines of Theorem 3.1 by using Proposition 2.2.

In the next theorem we prove the uniqueness of viscosity solution under different
assumptions from those in Theorem 3.1. As in Corollaries 3.1 and 3.2, uniqueness
and comparison of classical solutions follow.

Theorem 3.2. The result of Theorem 3.1 holds if we let instead ∂NQ = ∅ so that
∂DQ = ∂pQ. Moreover, the result of Theorem 3.1 also holds if we let Ω = R × Σ
with ∂NQ = R×∂Σ× (0, T ) or ∂NQ = ∅, as long as ||u||

Cα,
α
2 (Q)

<∞. In this case

we make no assumptions on u on {0} × Σ× [0, T ].

Proof. The proof follows the lines of the proof of Theorem 3.1. In this case we use
Propositions 2.4 and 2.6 instead of Proposition 2.5 in order to see that Q∩∂{u > 0}
is bounded.

Corollary 3.3. Let u be as in Theorem 3.1. Then u is a decreasing function in Q
in the direction e1 and ux1 < 0 in {u > 0} ∩Q.

Moreover, for every ε > 0, the level set {u = ε} is given by x1 = gε(x′, t) with
gε ∈ C1(Σ× [0, T ]) and ∇x′gε ∈ Cα,

α
2 (Σ× [0, T ]).

The same conclusion holds under the assumptions of Theorem 3.2.

Proof. Let us fix δ > 0 small and define, as in Theorem 3.1,

uδ(x, t) = u(x1 + δ, x′, t).

Since u is a viscosity solution to P in Q with ∂u
∂η = 0 on ∂NQ, then, reasoning as

in Theorem 3.1, we obtain

u(x, t) ≥ uδ(x, t) = u(x1 + δ, x′, t) for (x, t) ∈ Q,
which implies that ux1 ≤ 0 in {u > 0}.

Since Lux1 = 0 in Q ∩ {u > 0} and ∂ux1
∂η = 0 on {u > 0} ∩ ∂NQ, there holds

that, for every ε > 0, ux1 < 0 in {u ≥ ε} ∩ (Q ∪ ∂NQ).
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Since ux1 < 0 in {u > 0} ∩ ∂DQ, there holds that for every ε > 0, ux1 < 0 in
{u ≥ ε} ∩Q and the result follows immediately.

4. Auxiliary results

This section contains results on the following problem:

∆u − ut = β(u)(P1)

where the function β is as in Section 1. The results will be used in the next
sections where P1 appears as a blow-up limit. The transport term will disappear
in the blow-up process.

Lemma 4.1. Let a, b ≥ 0 and let ψ = ψa,b be the classical solution to

ψss = β(ψ) for s > 0,

ψ(0) = a, ψs(0) = −
√

2b.
(4.1)

Let B(τ) =
∫ τ

0
β(ρ) dρ.

(4.2) If b = 0 and a ∈ {0} ∪ [1,+∞), then ψ ≡ a.
(4.3) If b = 0 and a ∈ (0, 1), then lims→+∞ ψ(s) = +∞.
(4.4) If b ∈

(
0, B(a)

)
, then lims→+∞ ψ(s) = +∞.

(4.5) If 0 < b = B(a), then ψs < 0 and lims→+∞ ψ(s) = 0.
(4.6) If b ∈

(
B(a), +∞

)
, then ψs < 0 and lims→+∞ ψ(s) = −∞.

Proof. We first recall that the function β is Lipschitz continuous and therefore,
there is a unique classical solution to (4.1).

Let us multiply equation (4.1) by ψs. We get

ψssψs = β(ψ)ψs =
d

d s

(
B(ψ)

)
for s > 0.

Then, if we integrate the expression above, we deduce that
1
2
ψ2
s(s)−B(ψ(s)) =

1
2
ψ2
s(0)−B(ψ(0)) = b −B(a),(4.7)

for every s ≥ 0.
I. Assume b = 0 and a ∈ {0} ∪ [1,+∞). Then, (4.2) follows easily if we recall

that β(s) = 0 for s ∈ {0} ∪ [1,+∞).
II. Assume b = 0 and a ∈ (0, 1). Since ψss ≥ 0, then ψs(s) ≥ 0. Moreover,

ψs(s) > 0 if s > 0 (otherwise ψ ≡ a in some interval, which is not possible). In
particular, given s0 > 0, we must have, for s > s0,

ψ(s) ≥ ψ(s0) + ψs(s0)(s− s0)

and hence, (4.3) follows.
III. Assume b ∈

(
0, B(a)

)
. From (4.7) we deduce

B(ψ(s)) ≥ B(a)− b > 0,

which implies, for some constant µ,

ψ(s) ≥ µ > 0.(4.8)

Let us suppose a > 1. Then, ψss = β(ψ) = 0 near the origin. Hence

ψ(s) = a−
√

2b s,
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as long as ψ(s) > 1. In any case ( a > 1 or a ≤ 1), there exists s0 ≥ 0 such that
ψ(s0) ≤ 1 and ψs(s0) = −

√
2b, and therefore, there exists s1 ≥ 0 such that

ψ(s1) < 1, ψs(s1) < 0.

If we had ψs ≤ 0 for s ≥ s1, then, from (4.8) and from equation (4.1), we would
get, for s ≥ s1,

0 < µ ≤ ψ(s) ≤ ψ(s1) < 1 and ψss(s) > δ > 0

for some constant δ. Thus,

0 ≥ ψs(s) ≥ ψs(s1) + δ(s− s1),

for s ≥ s1, which is not possible.
That is, we have shown that there exists s2 > 0 such that ψs(s2) > 0. Then,

ψss ≥ 0 now gives, for s ≥ s2,

ψ(s) ≥ ψ(s2) + ψs(s2)(s− s2),

that is, (4.4) holds.
IV. Assume 0 < b = B(a). Now, (4.7) gives

1
2
ψ2
s(s) = B(ψ(s)) for s ≥ 0.(4.9)

If there existed s0 ≥ 0 such that ψs(s0) = 0, then B(ψ(s0)) = 0, implying
ψ(s0) ≤ 0. The uniqueness of (4.1) would give ψ(s) ≡ ψ(s0), a contradiction.

Hence, ψs(s) < 0 and thus B(ψ(s)) > 0. This implies that ψ(s) > 0 and that
there exists

lim
s→+∞

ψ(s) = γ, 0 ≤ γ < +∞.

If γ > 0, it follows from (4.9) that lims→+∞ ψs(s) = −
√

2B(γ) < 0, and then
ψ(s) < 0 for s large. This gives a contradiction and thus, (4.5) holds.

V. Finally, assume b ∈
(
B(a), +∞

)
. Then, (4.7) gives

1
2
ψ2
s(s) ≥ b−B(a) > 0.

In particular, ψs never vanishes and we have, ψs(s) ≤ −
√

2
(
b−B(a)

)
. It follows

that

ψ(s) ≤ ψ(0)−
√

2
(
b−B(a)

)
s,

for s > 0, then (4.6) holds and the proof is complete.

Lemma 4.2. Let B(τ) =
∫ τ

0 β(ρ) dρ.
a) Let ψn ≥ 0, symmetric with respect to s = n

2 , be a solution to

ψss = β(ψ) in (0, n),

ψ(0) = ψ(n) = a ∈ (0, 1).
(4.10)

Then, ψns (0) = −
√

2bn with bn ↗ B(a) as n→∞.
b) Let ψn ≥ 0 be a solution to

ψss = β(ψ) in (0, n),

ψ(0) = a ∈ (0, 1],

ψ(n) = 0.
(4.11)
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Then, ψns (0) = −
√

2bn with bn ↘ B(a) as n→∞.

Proof. Part a). Since ψn is symmetric, ψns (n2 ) = 0.
On the other hand, since

1
2

(ψns )2 −B(ψn) = bn −B(a)

there holds that

−B
(
ψn(n/2)

)
= bn −B(a).

In particular, there holds that bn ≤ B(a).
We claim that ψn(n2 ) → 0 as n → ∞. In fact, if not there would exist α > 0

such that, for a subsequence that we still call ψn,

ψn(s) ≥ ψn(n/2) ≥ α for 0 ≤ s ≤ n.

On the other hand, there holds that ψn(s) ≤ a for 0 ≤ s ≤ n. Thus, β(ψn(s)) ≥
β0 > 0 for 0 ≤ s ≤ n. Therefore, ψnss ≥ β0 for 0 ≤ s ≤ n and thus

ψn(s) ≥ α+
β0

2
(
s− n/2

)2 for s ∈ [n/2, n].

In particular,

a = ψn(n) ≥ α+ (β0/8)n2 →∞ as n→∞

which is a contradiction. Thus,

bn −B(a) = −B
(
ψn(n/2)

)
→ 0 as n→∞.

Part b). Since

1
2

(ψns )2 −B(ψn) = bn −B(a),

there holds that
1
2

(ψns (n))2 = bn −B(a) ≥ 0.

We claim that ψns (n)→ 0 as n →∞. In fact, if not, there would exist α > 0 such
that, for a subsequence that we still call ψn, ψns (n) ≤ −α. Since ψnss ≥ 0, there
holds that

ψns (n) ≥ ψns (s)

for 0 ≤ s ≤ n. Thus,

ψns (s) ≤ −α for 0 ≤ s ≤ n.

Therefore,

a = ψn(0) = ψn(0)− ψn(n) = −ψns (θ)n ≥ αn→∞ as n→∞

which is a contradiction. Therefore, ψns (n)→ 0 as n→∞ and there holds that

bn → B(a)

as n→∞.
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Lemma 4.3. Let Rγ =
{

(x, t) ∈ RN+1 /x1 > 0 , −∞ < t ≤ γ
}

, 0 ≤ θ < 1 and let
U ∈ C2+α,1+α

2 (Rγ) be such that

∆U − Ut = β(U) in Rγ ,
U = 1− θ on {x1 = 0},

0 ≤U ≤ 1− θ in Rγ .

1) If θ = 0, then |∇U | ≤
√

2M on {x1 = 0}.
2) If 0 < θ < 1 and 0 < σ < M is such that

∫ 1−θ
0 β(ρ) dρ = M − σ, then

|∇U | =
√

2(M − σ) on {x1 = 0}.

Proof. For θ ∈ [0, 1), let Vn be the bounded solution to

∆V − Vt = β(V ) in {0 < x1 < n, x′ ∈ RN−1 , t > 0},
V (0, x′, t) = 1− θ,
V (n, x′, t) = 0,

V (x, 0) = 0,

and let Wn be the bounded solution to

∆W −Wt = β(W ) in {0 < x1 < n, x′ ∈ RN−1 , t > 0},
W (0, x′, t) = 1− θ,
W (n, x′, t) = 1− θ,
W (x, 0) = 1− θ.

Let us point out that Vn and Wn are actually functions of (x1, t).
For k ∈ N, let V kn (x, t) = Vn(x, t + k) and W k

n (x, t) = Wn(x, t + k). Since V kn ,
U and W k

n are bounded solutions to equation P1 in the domain {0 < x1 < n, x′ ∈
RN−1 , −k < t ≤ γ}, and on the parabolic boundary of this domain, we have
V kn ≤ U ≤W k

n . It follows that

V kn (x, t) ≤ U(x, t) ≤W k
n (x, t) in {0 < x1 < n, x′ ∈ RN−1 , −k < t ≤ γ}.

On the other hand (see [H]), Vn(x, t) → ψn−(x1) uniformly as t → ∞, where
ψn− ≥ 0 is a solution to (4.11) with a = 1− θ.

Analogously, Wn(x, t)→ ψn+(x1) uniformly as t→∞, where ψn+ ≥ 0, symmetric
with respect to x1 = n

2 , is a solution to (4.10) with a = 1− θ.
Therefore, letting k→∞ we get

ψn−(x1) ≤ U(x, t) ≤ ψn+(x1) for 0 ≤ x1 ≤ n , t ≤ γ.
In particular,

(ψn−)s(0) ≤ Ux1(0, x′, t) ≤ (ψn+)s(0) for t ≤ γ.

Let θ = 0. We deduce from Lemma 4.2, b) that

−|∇U(0, x′, t)| = Ux1(0, x′, t) ≥ lim
n→∞

(ψn−)s(0) = −
√

2M.

Let θ > 0. We deduce from Lemma 4.2, a) and b) that

−
√

2(M − σ) = lim
n→∞

(ψn−)s(0) ≤ Ux1(0, x′, t) ≤ lim
n→∞

(ψn+)s(0) = −
√

2(M − σ).
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Therefore,

−|∇U(0, x′, t)| = Ux1(0, x′, t) = −
√

2(M − σ).

Lemma 4.4. Let εj, γεj and τεj be sequences such that εj > 0, εj → 0, γεj > 0,
γεj → γ, with 0 ≤ γ ≤ +∞, τεj > 0, τεj → τ with 0 ≤ τ ≤ +∞, and such that
τ < +∞ implies that γ = +∞. Let ρ > 0 and

Aεj =

{
(x, t) / |x| < ρ

εj
, −min(τεj ,

ρ2

ε2
j

) < t < min(γεj ,
ρ2

ε2
j

)

}
.

Let 0 ≤ θ < 1 and let ūεj be weak solutions to∑
i, k

∂

∂xi

(
a
εj
ik(x)

∂ūεj

∂xk

)
+
∑
i

b
εj
i (x, t)

∂ūεj

∂xi
− ūεj

= β(ūεj ) in {x1 > f̄εj (x
′, t)} ∩ Aεj ,

ūεj = 1− θ on {x1 = f̄εj (x
′, t)} ∩ Aεj ,

0 ≤ ūεj ≤ 1− θ in {x1 ≥ f̄εj (x′, t)} ∩ Aεj ,

with ūεj ∈ C({x1 ≥ f̄εj (x′, t)} ∩Aεj ), and ∇ūεj ∈ L2. Here aεjik → δik and bεji → 0
uniformly on compact sets of RN and of RN × (−τ, γ) respectively, and f̄εj are
continuous functions such that f̄εj (0, 0) = 0 with f̄εj → 0 uniformly on compact
subsets of RN−1×(−τ, γ). Moreover, we assume that ||f̄εj ||C1(K)+||∇x′ f̄εj ||Cα,α2 (K)

are uniformly bounded, for every compact set K ⊂ RN−1 × (−τ, γ), and in addi-
tion, ||bεji ||L∞ and ||aεjik ||W 1,∞ are uniformly bounded. Moreover, aεjik are uniformly
parabolic with constant independent of εj.

Then, there exists a function ū such that, for a subsequence,

ū ∈ C2+α,1+α
2
(
{x1 ≥ 0, γ > t > −τ}

)
,

ūεj → ū uniformly on compact subsets of {x1 > 0, γ > t > −τ},
∆ū− ūt = β(ū) in {x1 > 0, γ > t > −τ},

ū = 1− θ on {x1 = 0, γ > t > −τ},
0 ≤ ū ≤ 1− θ in {x1 ≥ 0, γ > t > −τ}.

If γ < +∞, we require, in addition, that

||f̄εj (x′, t+ γεj − γ)||C1(K) + ||∇x′ f̄εj (x′, t+ γεj − γ)||
Cα,

α
2 (K)

be uniformly bounded for every compact set K ⊂ RN−1 × (−∞, γ]. And we deduce
that

u ∈ C2+α,1+α
2
(
{x1 ≥ 0, t ≤ γ}

)
.

If τ < +∞, we let

Bεj =
{
x / |x| < ρ

εj
, x1 > f̄εj (x

′,−τεj )
}
,

and we require, in addition, that for every R > 0,

||ūεj (x,−τεj )||Cα(Bεj∩BR(0)) ≤ CR,
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and that there exists r > 0 such that

||ūεj (x,−τεj )||C1+α(Bεj∩Br(0)) ≤ Cr.

Moreover, we assume that ||f̄εj (x′, t−τεj+τ)||C1(K)+||∇x′ f̄εj (x′, t−τεj+τ)||
Cα,

α
2 (K)

are uniformly bounded for every compact set K ⊂ RN−1 × [−τ,+∞).
Then, there holds that

ū ∈ Cα,α2
(
{x1 ≥ 0, t ≥ −τ}

)
, ∇u ∈ C

(
{0 ≤ x1 < r, t ≥ −τ}

)
,

ūεj (x,−τεj )→ ū(x,−τ) uniformly on compact subsets of {x1 > 0}.

In any case (τ, γ be infinite or finite)

|∇ūεj (0, 0)| → |∇ū(0, 0)|.

Proof. We will drop the subscript j when referring to the sequences defined in the
statement and ε→ 0 will mean j →∞.
Case I. τ = +∞, γ = +∞.

In order to prove the result, we first apply suitable changes of variables to
straighten up the boundaries x1 = f̄ε(x′, t). Namely, for every ε, we let

z = hε(x, t)

where

hε1 = x1 − f̄ε(x′, t), hεi = xi, i > 1,

and we define

v̄ε(z, t) = ūε(x, t).

Let R > 0 be fixed and let

B+
R = {(z, t) / z1 > 0} ∩BR(0, 0).

Then the function v̄ε ∈ C(B+
R ), with ∇v̄ε ∈ L2(B+

R) is a weak solution to∑
r, l

∂

∂zr

(
ãεrl(z, t)

∂v̄ε

∂zl

)
+
∑
r
b̃εr(z, t)

∂v̄ε

∂zr
− ∂v̄ε

∂t
= β(v̄ε) in B+

R ,

v̄ε = 1− θ on B+
R ∩ {z1 = 0},

0 ≤v̄ε ≤ 1− θ in B+
R

if ε is small enough. Here

ãεrl(z, t) =
∑
i, k

aεik(x)
∂hεr
∂xi

∂hεl
∂xk

,

b̃εr(z, t) =
∑
i

bεi (x, t)
∂hεr
∂xi
− ∂hεr

∂t
.

(4.12)

Note that there exists CR > 0 such that

||ãεrl||Cα, α2 (B+
R)
≤ CR,

||b̃εr||L∞(B+
R) ≤ CR.

(4.13)
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Moreover, there exists λ′ > 0 such that, if ε is small enough,∑
r, l

ãεrl(z, t)ξr ξl ≥ λ′|ξ|2 for (z, t) ∈ B+
R .(4.14)

Here we have used that, by hypothesis, there exists λ > 0 such that∑
i, k

aεik(x)ξi ξk ≥ λ|ξ|2

and the fact that |(Dhε)−1| are uniformly bounded on any compact set, if ε is small
enough.

By Theorem 10.1, Chapter III in [LSU], there exists CR > 0 such that

||v̄ε||
Cα,

α
2 (B+

R
2

)
≤ CR.

On the other hand, by Theorem 1.4.3 in [CK] we also have that

||∇v̄ε||
L∞(B+

R
2

)
≤ CR.

Moreover, by Theorem 1.4.10 in [CK], the functions ∇v̄ε are continuous in B+
R
2

with
a modulus of continuity independent of ε.

Therefore, there exists a function u ∈ Cα,α2 (B+
R
2

) and a subsequence that we still

call v̄ε such that v̄ε → u and ∇v̄ε → ∇u uniformly in B+
R
2

.
Clearly,

u = 1− θ in {z1 = 0} ∩B+
R
2
,

0 ≤u ≤ 1− θ in B+
R
2
.

Since f̄ε → 0 and ∇x′ f̄ε → 0 uniformly on compact sets, it is easy to see that
we actually have that

ūε → u uniformly on compact sets of B+
R
2

and

∇ūε → ∇u uniformly on compact sets of B+
R
2
.

Clearly u is a solution of ∆u − ut = β(u) in B+
R
2

. Standard Schauder estimates

imply that ū ∈ C2+α,1+α
2 (B+

R
4

).

Since f̄ε(0, 0) = 0, ∇x′ f̄ε(0, 0) → 0 and ∇v̄ε(0, 0) → ∇ū(0, 0), it is easy to see
that ∇ūε(0, 0)→ ∇ū(0, 0).

Since R is arbitrary, a standard procedure gives the result in

{z1 > 0 , −τ < t < γ} for τ = +∞ and γ = +∞.
Case II. τ < +∞.

As in the previous case, we apply suitable changes of variables to straighten up
the boundaries x1 = f̄ε(x′, t). Namely, for every ε, we let{

z = hε(x, t),
s = t+ τε − τ
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where

hε1(x, t) = x1 − f̄ε(x′, t), hεi (x, t) = xi, i > 1,

and we define

w̄ε(z, s) = ūε(x, t).

Let R > 0 be fixed and let

B+
R,τ = {(z, s) / z1 > 0 , s > −τ} ∩BR(0, 0).

Then the function w̄ε ∈ C(B+
R,τ ), with ∇w̄ε ∈ L2(B+

R,τ ) is a weak solution to∑
r, l

∂

∂zr

(
ãεrl(z, s)

∂w̄ε

∂zl

)
+
∑
r
b̃εr(z, s)

∂w̄ε

∂zr
− ∂w̄ε

∂s
= β(w̄ε) in B+

R,τ ,

w̄ε = 1− θ on B+
R,τ ∩ {z1 = 0},

0 ≤w̄ε ≤ 1− θ in B+
R,τ ,

w̄ε = gε(z) in B+
R,τ ∩ {s = −τ}

if ε is small enough, where we have called gε(z) = w̄ε(z,−τ). Here ãεrl(z, s) and
b̃εr(z, s) are defined in B+

R,τ in a way analogous to (4.12) and moreover, they satisfy
estimates similar to those in (4.13) and (4.14) in B+

R,τ . In addition,

||gε||Cα(BR(0)∩{z1≥0}) ≤ CR and ||gε||C1+α(Br(0)∩{z1≥0}) ≤ Cr.

Moreover, gε = 1− θ on {z1 = 0}.
By Theorem 10.1, Chapter III in [LSU], there exists CR > 0 such that

||w̄ε||
Cα,

α
2 (B+

R
2 ,τ

)
≤ CR.

On the other hand, by Remark 1.4.11 in [CK], applied to the functions ŵε = w̄ε−gε,
we also have that

||∇w̄ε||
L∞
(

(B r
2

(0)×[−τ,R2 ])∩{z1≥0}
) ≤ CR

and that the functions ∇w̄ε are continuous in (B r
2
(0)× [−τ, R2 ]) ∩ {z1 ≥ 0} with a

modulus of continuity independent of ε.
Proceeding as in the case τ = +∞ and using that τε → τ we see that there exists

a function u ∈ Cα,α2 (B+
R
2 ,τ

) such that for a subsequence

w̄ε → u uniformly in B+
R
2 ,τ
,

∇w̄ε → ∇u uniformly on compact sets of B+
R
2 ,τ
,

ūε → u, ∇ūε → ∇u uniformly on compact sets of B+
R
2 ,τ
,

ūε(z,−τε)→ u(z,−τ) uniformly on compact sets of {z1 > 0} ∩BR
2

(0),

∇w̄ε → ∇u uniformly in
(
B r

2
(0)× [−τ, R

2
]
)
∩ {z1 ≥ 0}.
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This function u satisfies

ū ∈ C2+α,1+α
2
(
{z1 ≥ 0, t > −τ} ∩BR

2
(0, 0)

)
,

∆ū− ūt = β(ū) in {z1 > 0, t > −τ} ∩BR
2

(0, 0),

ū = 1− θ on {z1 = 0, t ≥ −τ} ∩BR
2

(0, 0),

0 ≤ ū ≤ 1− θ in {z1 ≥ 0, t ≥ −τ} ∩BR
2

(0, 0).

Moreover, there holds that ∇ūε(0, 0)→ ∇ū(0, 0).
Since R is arbitrary, Case II is proved.

Case III. γ < +∞.
We proceed as in the previous cases. For every ε, we let{

z = hε(x, t),
s = t− γε + γ

where

hε1(x, t) = x1 − f̄ε(x′, t), hεi (x, t) = xi, i > 1,

and we define

w̄ε(z, s) = ūε(x, t).

Let R > 0 be fixed and let

B+
R,γ = {(z, s) / z1 > 0 , s < γ} ∩BR(0, 0).

As in the previous cases, by using Theorem 10.1, Chapter III in [LSU], and Theo-
rems 1.4.3 and 1.4.10 in [CK] we deduce that there exists a function u ∈ Cα,α2 (B+

R
2 ,γ

)
such that for a subsequence

w̄ε → u, ∇w̄ε → ∇u uniformly in B+
R
2 ,γ
,

ūε → u, ∇ūε → ∇u uniformly on compact sets of B+
R
2 ,γ
.

This function u satisfies

ū ∈ C2+α,1+α
2
(
{z1 ≥ 0, t ≤ γ} ∩BR

2
(0, 0)

)
,

∆ū − ūt = β(ū) in {z1 > 0, t < γ} ∩BR
2

(0, 0),

ū = 1− θ on {z1 = 0, t ≤ γ} ∩BR
2

(0, 0),

0 ≤ ū ≤ 1− θ in {z1 ≥ 0, t ≤ γ} ∩BR
2

(0, 0).

Moreover, there holds that ∇ūε(0, 0)→ ∇ū(0, 0).
Since R is arbitrary, the lemma is proved.

5. Approximation results

In this section we prove that, under certain assumptions, a classical subsolu-
tion to problem P is the uniform limit of a family of subsolutions to problem Pε
(Theorem 5.1). We prove the analogous result for supersolutions (Theorem 5.2).

Throughout this section we will assume that Ω = R× Σ (or Ω = (0,+∞)× Σ).
We define Q = Ω× (0, T ) and we let ∂NQ = R× ∂Σ× (0, T ) (or ∂NQ = (0,+∞)×
∂Σ× (0, T )). In addition, w will be a function satisfying
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(H1)

i) For every ε > 0 small, {w > ε} is given by x1 < gε(x′, t) with gε ∈
C1(Σ × [0, T ]) and ∇x′gε ∈ Cα,

α
2 (Σ × [0, T ]). Moreover, ||gε||L∞(Σ×(0,T )) +

||gε(x′, 0)||Cα(Σ) ≤ C for ε small.
ii) wx1 < 0 on {w > 0} ∩ {t = 0}.
iii) In case Ω = (0,+∞)×Σ, we assume that w(0, x′, t) > 0 for (x′, t) ∈ Σ× [0, T ].

Theorem 5.1. Let w be a classical subsolution to P in Q, with ∂w
∂η = 0 on ∂NQ,

satisfying (H1). Assume, in addition, that there exists δ0 > 0 such that

|∇w+| =
√

2M + δ0 on Q ∩ ∂{w > 0}.

Let R > 0. Then, there exists a family vε ∈ C(Q), with ∇vε ∈ L2
loc(Q), of weak

subsolutions to Pε in Q, with ∂vε

∂η = 0 on ∂NQ, such that, as ε → 0, vε → w

uniformly in Q.
Moreover, vε = w in {w ≥ ε}, vε = 0 in {x1 ≥ gε(x′, t) + R} and ∇vε ∈

C(Q ∩ {gε(x′, t) ≤ x1 ≤ gε(x′, t) +R} ∩ {t > 0}).

Proof. Step I. Construction of the family vε. For every ε > 0 small, we define the
domain Dε

R ⊂ Q in the following way:

Dε
R =

{
(x, t) ∈ Q/ gε(x′, t) < x1 < gε(x′, t) +R

}
.

Let wε be the solution to Pε in Dε
R with boundary data:

wε(x, t) =


ε on x1 = gε(x′, t),
0 on x1 = gε(x′, t) +R,

wε0(x) on ∂Dε
R ∩ {t = 0},

∂wε

∂η
= 0 on ∂NDε

R := ∂NQ ∩ {gε(x′, t) < x1 < gε(x′, t) +R
}
.

In order to give the initial data wε0 we let ψ = ψa,b be the solution to (4.1) with

a = 1, b = M + δ0/8.

We now let

ϕ(ξ) = ψ+
( 1− ξ√

2M + δ0

)
,

and we define

wε0(x) = εϕ
(1
ε
w(x, 0)

)
χ(w̃(x))

where w̃ is a locally Lipschitz continuous function in Ω such that w̃(x) = w(x, 0) in
{w(x, 0) > 0} and w̃ < 0 in Ω\{w(x, 0) > 0}. Here χ ∈ C∞(R) is such that χ(s) ≡ 1
for s > − 1

3k, χ(s) ≡ 0 for s < − 2
3k, 0 ≤ χ ≤ 1 and −k = max{w̃(x), for x / x1 =

g0(x′, 0) + R} where g0(x′, 0) = limε→0 gε(x′, 0) uniformly on Σ. Note that {w =
0} ∩ ∂{w > 0} ∩ {t = 0} is given by x1 = g0(x′, 0).

For the existence and regularity of such a solution we refer to [LVW], Theorem
1.1, where it is shown that there exists a unique solution wε ∈ C(Dε

R) with ∇wε ∈
C(Dε

R ∩ {t > 0}) ∩ L2(Dε
R).
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Finally, we define the family vε as follows:

vε =


w in {w ≥ ε},
wε in Dε

R,

0 otherwise.

Step II. Passage to the limit. If (x, 0) ∈ Dε
R, we have 0 ≤ 1

εw(x, 0) ≤ 1. Since, from
Lemma 4.1, we know that 0 ≤ ψ+(s) ≤ 1 for s ≥ 0, it follows that 0 ≤ wε(x, 0) ≤ ε.
Applying the comparison principle for solutions of Pε we deduce that 0 ≤ wε ≤ ε.
Hence,

sup
Q

|vε − w| ≤ 2ε

and therefore, the convergence of the family vε follows.
Step III. Let us show that there exists ε0 > 0 such that the functions vε are
subsolutions to Pε for ε < ε0.

If vε > ε, then vε = w, which by hypothesis is subcaloric. Since βε(s) = 0 when
s > ε, it follows that vε are subsolutions to Pε here.

If 0 < vε < ε, then we are in Dε
R and therefore, by construction, vε are solutions

to Pε.
If vε ≡ 0, the same conclusion holds, due to the fact that βε(0) = 0.
That is, the vε’s are continuous functions, and they are piecewise subsolutions

to Pε. In order to see that vε are globally subsolutions to Pε, it suffices to see that
the jumps of the gradients (which occur at smooth surfaces), have the right sign.

To this effect, we will show that there exists ε0 > 0 such that

|∇wε| ≤
√

2M + δ0/2 on {w = ε}, for ε < ε0.(5.1)

Assume that (5.1) does not hold. Then, for every j ∈ N, there exist εj > 0 and
(xεj , tεj ) ∈ Q, with

εj → 0 and (xεj , tεj )→ (x0, t0) ∈ {w = 0} ∩ ∂{w > 0},
such that

wεj (xεj , tεj ) = εj and |∇wεj (xεj , tεj )| >
√

2M + δ0/2.(5.2)

From now on we will drop the subscript j when referring to the sequences defined
above and ε→ 0 will mean j →∞.

Since on the lateral boundary ∂ND
ε
R we have the Neumann data ∂wε

∂η = 0, we
will use a reflection argument and assume that the points (xε, tε) are far from the
lateral boundary (with a different equation).

In fact, if (x0, t0) ∈ R×∂Σ×[0, T ] (or (0,+∞)×∂Σ×[0, T ]), we apply Proposition
A.1 in the Appendix and deduce that there exists a change of variables y = h(x)
such that h(x0) = 0 and such that the function

uε(y, t) =
{
wε(x, t) for yN ≥ 0,
uε(y1, · · · , yN−1,−yN , t) for yN < 0

is a weak solution to∑
i, j

∂

∂yi

(
aij(y)

∂uε

∂yj

)
+
∑
i

bi(y, t)
∂uε

∂yi
− uεt = βε(uε) in {uε < ε}

for y in a neighborhood N of the origin and t ∈ [0, T ]. Here aij ∈ W 1,∞(N ),
bi ∈ L∞(N × [0, T ]).
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We choose the variables in such a way that ∇h1(x0) = − ∇w
+(x0,t0)

|∇w+(x0,t0)| , ∇hi(x0).
∇hj(x0) = δij and aij(0) = δij .

We will sometimes denote y = (y1, y
′). And we denote yε = h(xε).

We point out that the change of variables, the neighborhood N and the coeffi-
cients aij in the equation depend only on the domain Σ; the coefficients bi depend
only on Σ and the coefficients ai. In particular, all of them are independent of
F = ε− w in Proposition A.1.

If, on the other hand, (x0, t0) ∈ Ω × [0, T ] we change the origin and perform a
rotation in the space variables and we are in a situation similar to the one above,
with uε(y, t) = wε(x, t) for y ∈ N .

In any case, since ∇h1(x0) = − ∇w
+(x0,t0)

|∇w+(x0,t0)| , ∇hi(x0) · ∇hj(x0) = δij and {wε =
ε} = {w = ε}, there exists a family fε of smooth functions such that, in a neigh-
borhood of (yε, tε),

{uε = ε} = {(y, t) / y1 − yε1 = fε(y′ − yε′, t− tε)},
{uε < ε} = {(y, t) / y1 − yε1 > fε(y′ − yε′, t− tε)},

(5.3)

where there holds that

fε(0, 0) = 0, |∇y′fε(0, 0)| → 0, ε→ 0.

We can assume that (5.3) holds in
(
Bρ(yε) × (tε − ρ2, tε + ρ2)

)
∩ {0 ≤ t ≤ T } for

some ρ > 0.
Let us now define

ūε(y, t) =
1
ε
uε(yε + εy, tε + ε2t),

f̄ε(y′, t) =
1
ε
fε(εy′, ε2t),

and let

τε =
tε
ε2

, γε =
T − tε
ε2

.

We have, for a subsequence,

τε → τ , γε → γ

where 0 ≤ τ, γ ≤ +∞ and τ and γ cannot be both finite.
We now let

Aε =
{

(y, t) / |y| < ρ

ε
, −min(τε,

ρ2

ε2
) < t < min(γε,

ρ2

ε2
)
}
.

Then, the functions ūε are weak solutions to∑
i, j

∂

∂yi

(
aεij(y)

∂ūε

∂yj

)
+
∑
i

bεi (y, t)
∂ūε

∂yi
− ūεt = β(ūε) in {y1 > f̄ε(y′, t)} ∩ Aε,

ūε = 1 on {y1 = f̄ε(y′, t)} ∩ Aε,
0 ≤ ūε ≤ 1 in {y1 ≥ f̄ε(y′, t)} ∩ Aε,

where aεij(y) = aij(yε + εy), bεi (y, t) = εbi(yε + εy, tε + ε2t). Note that we are
under the hypotheses of Lemma 4.4. Then, there exists a function ū such that, for
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a subsequence,

ū ∈ C2+α,1+α
2
(
{y1 ≥ 0, −τ < t < γ}

)
,

ūε → ū uniformly on compact subsets of {y1 > 0, −τ < t < γ},
∆ū− ūt = β(ū) in {y1 > 0, −τ < t < γ},

ū = 1 on {y1 = 0, −τ < t < γ},
0 ≤ū ≤ 1 in {y1 ≥ 0, −τ < t < γ}.

We will divide the remainder of the proof into two cases, depending on whether
τ = +∞ or τ < +∞.
Case I. Assume τ = +∞.

In this case, Lemma 4.4 also gives

|∇ūε(0, 0)| → |∇ū(0, 0)|.

On the other hand, ū satisfies the hypotheses of Lemma 4.3 and therefore,

|∇ū| ≤
√

2M on {y1 = 0},

which yields

|∇ūε(0, 0)| ≤
√

2M + δ0/4,

for ε small. But this gives

|∇wε(xε, tε)| ≤
√

2M + δ0/2,

for ε small. This contradicts (5.2) and completes the proof in case τ = +∞.
Case II. Assume τ < +∞. (In this case γ = +∞.)

There holds that ūε(y,−τε) = 1
εu

ε(yε + εy, 0), then

ūε(y,−τε) = ϕ
(1
ε
w(h−1(yε + εy), 0)

)
χ(w̃(h−1(yε + εy)))(5.4)

when x0 ∈ R×Σ. When x0 ∈ R×∂Σ, (5.4) holds for (yε+ εy)N ≥ 0 and we obtain
ūε(y,−τε) for (yε + εy)N < 0, recalling that

uε(y, 0) = uε(y1, · · · , yN−1,−yN , 0) for yN < 0.

We want to apply here the result of Lemma 4.4 corresponding to τ < +∞. In
fact, we can see that there exist C, r > 0 such that ||ūε(y,−τε)||C1+α(Br(0)) ≤ C. In

case x0 ∈ R×Σ we use the fact that w is locally Lipschitz continuous in Ω× [0, T ]
and tε

ε → 0 (and therefore, t0 = 0) when τ < +∞, so that w(h−1(yε + εy), 0) ≥ ε
2

for |y| < r1 and ε small. We also use that ϕ ∈ C2(1−m,+∞) for some m > 0. In
case that x0 ∈ R× ∂Σ we argue in a similar way and we also use (see Proposition
A.1) that ∂uε

∂yN
(y, 0) = 0 on {yN = 0} if ε is small and y bounded.

Now Lemma 4.4 gives, for a subsequence,

ū ∈ Cα,α2
(
{y1 ≥ 0, t ≥ −τ}

)
,

ūε(y,−τε)→ ū(y,−τ) uniformly on compact subsets of {y1 > 0}.

Now using that ∇h1(x0) = − ∇w
+(x0,t0)

|∇w+(x0,t0)| and ∇h1(x0) · ∇hi(x0) = δi1, we get that

ū(y,−τ) = ϕ
(

1− |∇w+(x0, t0)| y1

)
.
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We know by hypothesis that |∇w+(x0, t0)| =
√

2M + δ0, thus,

ū(y,−τ) = ψ+(y1).

(Notice that, in particular, the function ū depends only on y1 and t.)
Since the function ψ+(y1) is a stationary subsolution to equation P1, bounded

for y1 ≥ 0, and ū = ψ+ on the parabolic boundary of the domain
{
y1 > 0, t > −τ

}
,

we conclude that

ū(y, t) ≥ ψ+(y1) in
{
y1 ≥ 0, t ≥ −τ

}
.

It follows that

|∇ū| ≤
√

2M + δ0/4 on {y1 = 0, t ≥ −τ}.
But Lemma 4.4 gives

|∇ūε(0, 0)| → |∇ū(0, 0)|,
which yields

|∇ūε(0, 0)| ≤
√

2M + 3δ0/8,

for ε small. Then,

|∇wε(xε, tε)| ≤
√

2M + δ0/2,

for ε small. This contradicts (5.2) and completes the proof in case τ < +∞.

Theorem 5.2. Let w be a classical supersolution to P in Q, with ∂w
∂η = 0 on ∂NQ,

satisfying (H1). Assume, in addition, that there exists δ0 > 0 such that

|∇w+| =
√

2M − δ0 on Q ∩ ∂{w > 0}.

Then, there exists a family vε ∈ C(Q), with ∇vε ∈ L2
loc(Q), of weak supersolutions

to Pε in Q, with ∂vε

∂η = 0 on ∂NQ, such that, as ε→ 0, vε → w uniformly in Q.
Moreover, there exists 0 < δ < 1 such that vε = w in {w ≥ (1 − δ)ε} and

∇vε ∈ C(Q ∩ {w ≤ (1 − δ)ε} ∩ {t > 0}).

Proof. Step I. Construction of the family vε. Let 0 < δ < 1 be such that

B(1− δ) =
∫ 1−δ

0

β(ρ) dρ = M − δ0/8.

For every ε > 0 small, we define the domain Dε ⊂ Q in the following way:

Dε =
{

(x, t) ∈ Q/x1 > g(1−δ)ε(x′, t)
}
.

Let wε be the bounded solution to Pε in Dε with boundary data

wε(x, t) =

{
(1− δ)ε on x1 = g(1−δ)ε(x′, t),
wε0(x) on ∂Dε ∩ {t = 0},

∂wε

∂η
= 0 on ∂ND

ε := ∂NQ ∩ {x1 > g(1−δ)ε(x′, t)}.

In order to give the initial data wε0, we let ψ = ψa,b be the solution to (4.1) with

a = 1− δ, b = M − δ0/8.

We now let

ϕ(ξ) = ψ
( 1− δ − ξ√

2M − δ0

)
,
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and we define

wε0(x) = εϕ
(1
ε
w(x, 0)

)
.

For the existence and regularity of such a solution we refer to [LVW], Theorem
2.1, where it is shown that there exists a unique solution wε ∈ L∞(Dε) ∩ C(Dε),
with ∇wε ∈ C(Dε ∩ {t > 0}) ∩ L2

loc(Dε).
Finally, we define the family vε as follows:

vε =

{
w in {w ≥ (1 − δ)ε},
wε in Dε.

Step II. Passage to the limit. If (x, 0) ∈ Dε, we have 0 ≤ 1
εw(x, 0) ≤ 1 − δ.

Since, from Lemma 4.1, we know that 0 ≤ ψ(s) ≤ 1 − δ for s ≥ 0, it follows that
0 ≤ wε(x, 0) ≤ (1 − δ)ε. Since βε(s) ≥ 0, constant functions are supersolutions to
Pε. Therefore the comparison principle for bounded super and subsolutions of Pε
implies that 0 ≤ wε ≤ (1 − δ)ε. Hence,

sup
Q

|vε − w| ≤ 2(1− δ)ε

and therefore, the convergence of the family vε follows.
Step III. Let us show that there exists ε0 > 0 such that the functions vε are
supersolutions to Pε for ε < ε0.

If vε > (1 − δ)ε, then vε = w, which by hypothesis is supercaloric. Since
βε(s) ≥ 0, it follows that vε are supersolutions to Pε here.

If vε < (1−δ)ε, then we are in Dε and therefore, by construction, vε are solutions
to Pε.

That is, the vε’s are continuous functions, and they are piecewise supersolutions
to Pε. In order to see that vε are globally supersolutions to Pε, it suffices to see
that the jumps of the gradients (which occur at smooth surfaces), have the right
sign.

To this effect, we will show that there exists ε0 > 0 such that

|∇wε| ≥
√

2M − δ0/2 on {w = (1− δ)ε}, for ε < ε0.(5.5)

Assume that (5.5) does not hold. Then, for every j ∈ N, there exist εj > 0 and
(xεj , tεj ) ∈ Q, with

εj → 0 and (xεj , tεj )→ (x0, t0) ∈ {w = 0} ∩ ∂{w > 0},

such that

wεj (xεj , tεj ) = (1− δ)εj and |∇wεj (xεj , tεj )| <
√

2M − δ0/2.(5.6)

From now on we will drop the subscript j when referring to the sequences defined
above and ε→ 0 will mean j →∞.

Since on the lateral boundary ∂ND
ε, we have the Neumann data ∂wε

∂η = 0, we
will use a reflection argument and assume that the points (xε, tε) are far from the
lateral boundary (with a different equation). To this effect we will proceed exactly
as in Theorem 5.1.

In fact, if (x0, t0) ∈ R×∂Σ×[0, T ] (or (0,+∞)×∂Σ×[0, T ]), we apply Proposition
A.1 in the Appendix and deduce that there exists a change of variables y = h(x)
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such that h(x0) = 0 and such that the function

uε(y, t) =
{
wε(x, t) for yN ≥ 0,
uε(y1, · · · , yN−1,−yN , t) for yN < 0

is a weak solution to∑
i, j

∂

∂yi

(
aij(y)

∂uε

∂yj

)
+
∑
i

bi(y, t)
∂uε

∂yi
− uεt = βε(uε) in {uε < (1− δ)ε}

for y in a neighborhood N of the origin and t ∈ [0, T ]. Here aij ∈ W 1,∞(N ),
bi ∈ L∞(N × [0, T ]).

We choose the variables in such a way that ∇h1(x0) = − ∇w
+(x0,t0)

|∇w+(x0,t0)| , ∇hi(x0).
∇hj(x0) = δij and aij(0) = δij .

We will sometimes denote y = (y1, y
′). And we denote yε = h(xε).

We point out that the change of variables, the neighborhood N and the coeffi-
cients aij in the equation depend only on the domain Σ; the coefficients bi depend
only on Σ and the coefficients ai. In particular, all of them are independent of
F = (1− δ)ε− w in Proposition A.1.

If, on the other hand, (x0, t0) ∈ Ω × [0, T ] we change the origin and perform a
rotation in the space variables and we are in a situation similar to the one above,
with uε(y, t) = wε(x, t) for y ∈ N .

In any case, since ∇h1(x0) = − ∇w
+(x0,t0)

|∇w+(x0,t0)| , ∇hi(x0) · ∇hj(x0) = δij and {wε =
(1 − δ)ε} = {w = (1 − δ)ε}, it follows that there exists a family fε of smooth
functions such that, in a neighborhood of (yε, tε),

{uε = (1− δ)ε} = {(y, t) / y1 − yε1 = fε(y′ − yε′, t− tε)},
{uε < (1− δ)ε} = {(y, t) / y1 − yε1 > fε(y′ − yε′, t− tε)},

(5.7)

where there holds that

fε(0, 0) = 0, |∇y′fε(0, 0)| → 0, ε→ 0.

We can assume that (5.7) holds in
(
Bρ(yε) × (tε − ρ2, tε + ρ2)

)
∩ {0 ≤ t ≤ T } for

some ρ > 0.
Let us now define

ūε(y, t) =
1
ε
uε(yε + εy, tε + ε2t),

f̄ε(y′, t) =
1
ε
fε(εy′, ε2t),

and let

τε =
tε
ε2

, γε =
T − tε
ε2

.

We have, for a subsequence,

τε → τ , γε → γ

where 0 ≤ τ, γ ≤ +∞ and τ and γ cannot be both finite.
We now let

Aε =
{

(y, t) / |y| < ρ

ε
, −min(τε,

ρ2

ε2
) < t < min(γε,

ρ2

ε2
)
}
.
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Then, the functions ūε are weak solutions to

∑
i, j

∂

∂yi

(
aεij(y)

∂ūε

∂yj

)
+
∑
i

bεi (y, t)
∂ūε

∂yi
− ūεt = β(ūε) in {y1 > f̄ε(y′, t)} ∩ Aε,

ūε = 1− δ on {y1 = f̄ε(y′, t)} ∩ Aε,
0 ≤ūε ≤ 1− δ in {y1 ≥ f̄ε(y′, t)} ∩ Aε.

where aεij(y) = aij(yε + εy), bεi (y, t) = εbi(yε + εy, tε + ε2t). Note that we are
under the hypotheses of Lemma 4.4. Then, there exists a function ū such that, for
a subsequence,

ū ∈ C2+α,1+α
2
(
{y1 ≥ 0, −τ < t < γ}

)
,

ūε → ū uniformly on compact subsets of {y1 > 0, −τ < t < γ},
∆ū− ūt = β(ū) in {y1 > 0, −τ < t < γ},

ū = 1− δ on {y1 = 0, −τ < t < γ},
0 ≤ū ≤ 1− δ in {y1 ≥ 0, −τ < t < γ}.

We will divide the remainder of the proof into two cases, depending on whether
τ = +∞ or τ < +∞.
Case I. Assume τ = +∞.

In this case, Lemma 4.4 also gives

|∇ūε(0, 0)| → |∇ū(0, 0)|.
On the other hand, ū satisfies the hypotheses of Lemma 4.3 and therefore,

|∇ū| =
√

2M − δ0/4 on {y1 = 0},
which yields

|∇ūε(0, 0)| ≥
√

2M − 3δ0/8,

for ε small. But this gives

|∇wε(xε, tε)| ≥
√

2M − δ0/2,

for ε small. This contradicts (5.6) and completes the proof in case τ = +∞.
Case II. Assume τ < +∞. (In this case γ = +∞.)

There holds that ūε(y,−τε) = 1
εu

ε(yε + εy, 0), then

ūε(y,−τε) = ϕ
(1
ε
w(h−1(yε + εy), 0)

)
(5.8)

when x0 ∈ R×Σ. When x0 ∈ R×∂Σ, (5.8) holds for (yε+ εy)N ≥ 0 and we obtain
ūε(y,−τε) for (yε + εy)N < 0, recalling that

uε(y, 0) = uε(y1, · · · , yN−1,−yN , 0) for yN < 0.

Here we want to apply the result of Lemma 4.4 corresponding to τ < +∞. In
fact, we can see that there exist C, r > 0 such that ||ūε(y,−τε)||C1+α(Br(0)) ≤ C. In

case x0 ∈ R×Σ we use the fact that w is locally Lipschitz continuous in Ω×[0, T ] and
tε
ε → 0 (and therefore, t0 = 0) when τ < +∞, so that w(h−1(yε+εy), 0) ≥ 1

2 (1−δ)ε
for |y| < r1 and ε small. We also use that ϕ ∈ C2. In case that x0 ∈ R × ∂Σ we
argue in a similar way and we also use (see Proposition A.1) that ∂uε

∂yN
(y, 0) = 0 on

{yN = 0} if ε is small and y bounded.



684 C. LEDERMAN, J. L. VÁZQUEZ, AND N. WOLANSKI

Now Lemma 4.4 gives, for a subsequence,

ū ∈ Cα,α2
(
{y1 ≥ 0, t ≥ −τ}

)
,

ūε(y,−τε)→ ū(y,−τ) uniformly on compact subsets of {y1 > 0}.

Now using that ∇h1(x0) = − ∇w
+(x0,t0)

|∇w+(x0,t0)| and ∇h1(x0) · ∇hi(x0) = δi1, we get that

ū(y,−τ) = ϕ
(

1− δ − |∇w+(x0, t0)| y1

)
.

We know, by hypothesis that |∇w+(x0, t0)| =
√

2M − δ0, thus,

ū(y,−τ) = ψ(y1).

Since the function ψ(y1) is a stationary solution to equation P1, bounded for
y1 ≥ 0, and ū = ψ on the parabolic boundary of the domain

{
y1 > 0, t > −τ

}
, we

conclude that

ū(y, t) = ψ(y1) in
{
y1 ≥ 0, t ≥ −τ

}
.

It follows that

|∇ū| =
√

2M − δ0/4 on {y1 = 0, t ≥ −τ}.
But Lemma 4.4 gives

|∇ūε(0, 0)| → |∇ū(0, 0)|,
which yields

|∇ūε(0, 0)| ≥
√

2M − 3δ0/8,

for ε small. Then,

|∇wε(xε, tε)| ≥
√

2M − δ0/2,

for ε small. This contradicts (5.6) and completes the proof in case τ < +∞.

6. Existence and uniqueness of the limit solution

In this section we prove that, under certain assumptions, a classical solution
to the initial and boundary value problem associated to P is the uniform limit of
any family of solutions to problem Pε with corresponding boundary data. This, in
particular, implies that such limit exists and is unique. Moreover, it is independent
of the choice of the function β.

In particular, under the assumptions of this section our classical solution is the
unique classical solution and also the unique viscosity solution (by the results of
Section 3).

First, we give the result in a semi-cylinder.

Theorem 6.1. Let Ω = (0,+∞)×Σ, Q = Ω× (0, T ), ∂NQ = (0,∞)× ∂Σ× (0, T )
and ∂DQ = ∂pQ \ ∂NQ.

Let u be a bounded classical solution to P in Q, with ∂u
∂η = 0 on ∂NQ, such that

u
∣∣
∂DQ

has a bounded, nonempty free boundary and ux1 < 0 on {u > 0} ∩ ∂DQ.
Assume that u(0, x′, t) > 0 for (x′, t) ∈ Σ×[0, T ] with u(0, x′, t) ∈ C2,1(Σ×[0, T ]).
Let uε ∈ C(Q) with ∇uε ∈ L2

loc(Q) be a family of bounded nonnegative weak
solutions to Pε in Q, with ∂uε

∂η = 0 on ∂NQ, such that uε → u uniformly on ∂DQ

and {uε > 0} ∩ ∂DQ→ {u > 0} ∩ ∂DQ. Then uε → u uniformly in Q.
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Remark 6.1. In order for Pε to approximate problem P properly, we need to impose
some condition on how the Dirichlet datum of u is approximated by the Dirichlet
datum of uε so that we get a limit solution with a free boundary starting from the
initial free boundary Ω∩∂{x / u(x, 0) > 0}. In fact, when ai ≡ 0, if uε ≥ ε on ∂DQ,
then the limit function û = limuε is the bounded solution to the heat equation
with Dirichlet datum u. Therefore, the uniqueness result does not hold if we only
require uε → u on ∂DQ.

However, we can relax the assumption that {uε > 0} ∩ ∂DQ → {u > 0} ∩
∂DQ, imposing instead a suitable control on the growth of uε(x, 0) away from
Ω ∩ {x / u(x, 0) > 0} and Theorem 6.1 still holds.

Proof of Theorem 6.1. Given ρ > 0 and σ > 0 small, we define in Q

uρ,σ(x, t) = (1 + σ)u(x1 + ρ, x′, t).

Then, uρ,σ is a classical subsolution to P in Q with vanishing Neumann data on
∂NQ. Given δ > 0 we choose ρ, σ so that

uρ,σ ≥ u− δ in Q.

On the other hand, using Proposition 2.5 and Corollary 3.3 we see that uρ,σ satisfies
the hypotheses of Theorem 5.1. Therefore, there exists a family vε (depending on
ρ and σ) of weak subsolutions to Pε in Q, such that

∂vε

∂η
= 0 on ∂NQ,

vε → uρ,σ uniformly in Q, as ε→ 0.

In addition, it follows from the construction of the family vε that σ can be chosen
small enough (depending on ρ), so that we have

vε ≤ uε on ∂DQ,
∂vε

∂η
=
∂uε

∂η
= 0 on ∂NQ.

Consequently,

vε ≤ uε in Q.

Therefore, there exists ε0(δ) such that, if ε ≤ ε0,

uρ,σ − δ ≤ uε in Q

and finally we obtain

u− 2δ ≤ uε in Q.

In order to show that uε ≤ u + 2δ, we proceed in a similar way. But we first
extend u to a neighborhood of x1 = 0 exactly as we did in Theorem 3.1. For
example, in −µ ≤ x1 ≤ 0, (x′, t) ∈ Σ× [0, T ], we let

u(x1, x
′, t) = u(0, x′, t)− cx1 − kx2

1,

where µ, c and k are positive constants, chosen as in Theorem 3.1 in such a way
that u > 0 in −µ ≤ x1 ≤ 0 and Lu ≤ 0 in {x1 > −µ} ∩ {u > 0}.

For 0 < ρ < µ and σ > 0 small, we define in Q

uρ,σ(x, t) = (1− σ)u(x1 − ρ, x′, t).



686 C. LEDERMAN, J. L. VÁZQUEZ, AND N. WOLANSKI

We choose ρ and σ small enough so that

uρ,σ ≤ u+ δ in Q.

Now we fix a > ρ small. Then, uρ,σ is a classical supersolution to P in Q∩{x1 > a}
with vanishing Neumann data on ∂NQ ∩ {x1 > a} which satisfies the hypotheses
of Theorem 5.2 in the domain Q ∩ {x1 > a}. Therefore, there exists a family vε

(depending on ρ and σ) of weak supersolutions to Pε in Q ∩ {x1 > a}, such that

∂vε

∂η
= 0 on ∂NQ ∩ {x1 > a},

vε → uρ,σ uniformly in Q ∩ {x1 ≥ a}, as ε→ 0.
(6.1)

Notice that, by the construction in Theorem 5.2, vε = uρ,σ in a neighborhood of
x1 = a. Then, if we extend vε to the whole region Q letting

vε = uρ,σ in 0 ≤ x1 ≤ a,

it follows that vε are supersolutions to Pε in Q satisfying (6.1) up to x1 = 0.
We finally choose σ small enough (depending on ρ) so that we have

vε ≥ uε on ∂DQ,
∂vε

∂η
=
∂uε

∂η
= 0 on ∂NQ.

It follows that

vε ≥ uε in Q.

Therefore, there exists ε1(δ) > 0 such that if ε ≤ ε1,

uρ,σ + δ ≥ uε in Q.

So that,

u+ 2δ ≥ uε in Q.

Thus, uε converges uniformly to u in Q.

A similar result holds for a full cylinder as spatial domain, under suitable mono-
tonicity assumptions at x1 = −∞.

Theorem 6.2. Let Ω = R × Σ, Q = Ω × (0, T ), ∂NQ = R × ∂Σ × (0, T ) and
∂DQ = ∂pQ \ ∂NQ.

Let u be a bounded classical solution to P in Q, with ∂u
∂η = 0 on ∂NQ and

||u||
Cα,

α
2 (Q)

<∞, such that u
∣∣
∂DQ

has a bounded, nonempty free boundary.

Assume that ux1 < 0 on {u > 0} ∩ ∂DQ and ux1(x, 0) ≤ −c1ec2 x1 for x1 ≤ −a
for some constants c1, c2, a > 0.

Let uε ∈ C(Q) with ∇uε ∈ L2
loc(Q) be a family of bounded nonnegative weak

solutions to Pε in Q, with ∂uε

∂η = 0 on ∂NQ, such that uε → u uniformly on ∂DQ,

with {uε > 0} ∩ ∂DQ → {u > 0} ∩ ∂DQ and |uε(x, 0) − u(x, 0)| ≤ k1 e
−k2 x

2
1 for

x1 ≤ −a for some constants k1, k2 > 0.
Then uε → u uniformly in Q.
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Proof. Step I. Behavior of uε and u for x1 → −∞.
Let us first see that we can take a large enough so that, for some ε1 > 0,

uε ≥ ε in x1 ≤ −a, if ε ≤ ε1.(6.2)

In fact, let c,K > 0 be such that, for ε ≤ ε0, there holds that uε(x, 0) ≥ 2c for
x1 ≤ −K2 . For δ0 > 0 and A ≥ ||a1||L∞ , let us consider the function

v−(x, t) = c

(
1− exp

{√2M + δ0

c
(x1 +At) +

2M + δ0

c2
t+

K
√

2M + δ0

c

})+

.

Then v− is a bounded classical subsolution to P in Q, with ∂v−
∂η = 0 on ∂NQ,

such that Q ∩ ∂{v− > 0} is bounded and |∇v−| =
√

2M + δ0 on Q ∩ ∂{v− > 0}.
Moreover, there holds that v−(x, 0) ≤ c for x ∈ Ω and v−(x, 0) = 0 for x1 ≥ −K.

Since v− satisfies the hypotheses of Theorem 5.1, we can construct a family
vε− of weak subsolutions to Pε in Q, with ∂vε−

∂η = 0 on ∂NQ, such that vε− → v−

uniformly in Q and vε−(x, 0) = 0 for x1 ≥ −K2 . There exists 0 < ε1 ≤ ε0 such that
vε−(x, 0) ≤ 2c if ε ≤ ε1 and thus,

vε−(x, 0) ≤ uε(x, 0) in Ω, if ε ≤ ε1.

Therefore, vε− ≤ uε in Q. So that, if a is taken large enough, (6.2) holds.
On the other hand, u satisfies the hypotheses of Proposition 2.4. Therefore,

Q∩ ∂{u > 0} is bounded. So that, we may choose a large enough in order to have,
in addition, that

u > 0 in x1 ≤ −a.
Therefore, for ε ≤ ε1 and wε = uε − u, there holds that

Lwε = 0 in x1 < −a, 0 < t < T,

wε(x, 0) ≤ k1e
−k2x

2
1 in x1 < −a,

wε ≤ L on x1 ≤ −a, 0 < t < T,

for some constant L independent of ε. Therefore, there exist k̄1, k̄2 > 0 such that,
for some constant l1 > a independent of ε,

wε(x, t) ≤ k̄1e
−k̄2x

2
1 in x1 ≤ −l1, if ε ≤ ε1.

We may replace the function wε above by −wε. Therefore,

|uε(x, t) − u(x, t)| ≤ k̄1e
−k̄2x

2
1 in x1 ≤ −l1, if ε ≤ ε1.(6.3)

Let us now analyze the behavior of ux1 for x1 → −∞. There holds that

Lux1 = 0 in x1 < −a, 0 < t < T,

ux1(x, 0) ≤ −c1ec2x1 in x1 < −a,
ux1 ≤ −r on x1 = −a, 0 < t < T,

for some positive constant r. Therefore, there exist c̄1, c̄2 > 0 and l2 > a such that

ux1(x, t) ≤ −c̄1ec̄2x1 in x1 ≤ −l2.(6.4)

Step II. Let δ > 0. We will show that

|uε − u| < 2δ in Q

if ε is small enough.



688 C. LEDERMAN, J. L. VÁZQUEZ, AND N. WOLANSKI

From (6.3), it follows that if l̄ > l1 is such that k̄1e
−k̄2 l̄

2 ≤ 2δ, then

|uε − u| < 2δ in x1 < −l̄, if ε ≤ ε1.(6.5)

We now proceed as in the proof of Theorem 6.1. For ρ > 0 and σ > 0 small, we
define in Q

uρ,σ(x, t) = (1 + σ)u(x1 + ρ, x′, t).

Since ||u||
Cα,

α
2 (Q)

<∞, there exists c > 0 such that

|uρ,σ(x, t)− u(x, t)| ≤ σA+ cρα in Q,

where A ≥ ||u||L∞(Q).
Let us fix 0 < ρ < 1 such that cρα ≤ δ

2 . We now fix l ≥ max{l̄, l1, l2} + 1, such

that k̄1e
− k̄2

2 l
2 ≤ c̄1

2 e
−c̄2l and such that ρ ≥ e−

k̄2
2 l

2
.

We finally fix σ > 0 such that σA ≤ min{ δ2 ,
c̄1
4 e
− k̄2

2 l
2−c̄2l}. Since ux1 < 0 in

{u > 0} ∩ {t = 0}, σ may be chosen small enough so that

uρ,σ(x, 0) < u(x, 0) in {uρ,σ(x, 0) > 0} ∩ {x1 ≥ −l}.(6.6)

We will next show that, if ε is small enough,

uρ,σ − δ ≤ uε in Q ∩ {x1 ≥ −l}.(6.7)

First, let us see that there holds, for ε ≤ ε1, that

uρ,σ(−l, x′, t) ≤ uε(−l, x′, t)− δ(l) for x′ ∈ Σ, 0 ≤ t ≤ T(6.8)

with δ(l) > 0. In fact, by (6.3) and (6.4)

(1 + σ)u(−l + ρ, x′, t)− uε(−l, x′, t) ≤ −c̄1ec̄2(−l+θρ)ρ+ k̄1e
−k̄2l

2
+ σA

where 0 < θ < 1. Thus,

uρ,σ(−l, x′, t)− uε(−l, x′, t) ≤ e−
k̄2
2 l

2(
k̄1e
− k̄2

2 l
2 − c̄1e−c̄2l

)
+ σA

≤ − c̄1
2
e−

k̄2
2 l

2−c̄2l + σA ≤ − c̄1
4
e−

k̄2
2 l

2−c̄2l := −δ(l).

Since uρ,σ satisfies the hypotheses of Theorem 5.1, we let vε be a family of
weak subsolutions to Pε in Q converging to uρ,σ uniformly in Q, constructed as in
Theorem 5.1. Then, by (6.8), if ε is small enough,

vε ≤ uε on x1 = −l.

On the other hand, from (6.6), it follows that, for ε small,

vε(x, 0) ≤ uε(x, 0) on x1 ≥ −l.

We deduce that vε ≤ uε in Q ∩ {x1 ≥ −l}, and therefore, (6.7) holds.
Since ρ and σ were chosen so that

|uρ,σ(x, t) − u(x, t)| ≤ δ in Q,

we finally deduce from (6.7) that

u− 2δ ≤ uε in Q ∩ {x1 ≥ −l}(6.9)

if ε is small.
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Therefore, by (6.5) and (6.9) there holds that

u− 2δ ≤ uε in Q

if ε is small enough.
We proceed analogously to deduce that

uε ≤ u+ 2δ in Q

if ε is small enough. The theorem is proved.

Appendix

In this Appendix we prove that a point (x0, t0) ∈ ∂NR ⊂ ∂pR for the problem
∆v +

∑
ai vxi − vt = ψ(v) in R, ∂v

∂η = 0 on ∂NR, can be seen as an interior point
for an equation with principal part in divergence form. In addition, if ∂NR and
∂DR = ∂pR \ ∂NR (on which Dirichlet data are given) are transversal, the new
region has a Dirichlet boundary with the same regularity as the original one. The
result is also true if (x0, t0) lies in ∂NR∩ ∂DR.

We will consider a domain R = O× (T1, T2)∩{F (x, t) > 0}. Here O = BR(x0)∩
{G(x) > 0} where G ∈ C3(BR(x0)) with |∇G| 6= 0 on {G = 0}, G(x0) = 0 and
F ∈ C(O × [T1, T2]).

We prove the following result.

Proposition A.1. Let ψ ∈ L∞(R) be globally Lipschitz continuous and let ai ∈
L∞(RN+1). Let v ∈ C(R), with ∇v ∈ L2(R), be a weak solution to

∆v +
∑

ai vxi − vt = ψ(v) in R,
∂v

∂η
= 0 on ∂NR,

(A.1)

where ∂NR = (BR(x0)× (T1, T2)) ∩ {F > 0} ∩ {G = 0} and η(x) = ∇G(x)
|∇G(x)| .

Then, there exist 0 < r ≤ R, a neighborhood N of the origin in the variables
(y1, . . . , yN ) and an invertible function h ∈ C2(Br(x0),N ) with nonvanishing Jaco-
bian in Br(x0), which are independent of the function F , such that h(x0) = 0 and
h(O ∩Br(x0)) = N ∩ {yN > 0}, ∂h−1

∂yN
(y) = η(h−1(y)) on {yN = 0}, and such that

the following result holds:
For t ∈ [T1, T2], let

F̂ (y, t) = F (h−1(y), t), y ∈ N ∩ {yN > 0},
and

F̃ (y, t) =

{
F̂ (y1, . . . , yN−1,−yN , t), y ∈ N ∩ {yN ≤ 0},
F̂ (y, t), y ∈ N ∩ {yN > 0}.

Let us define analogously the function ṽ(y, t). Then, there holds that ṽ is con-
tinuous in (N × [T1, T2]) ∩ {F̃ ≥ 0} with ∇ṽ ∈ L2((N × (T1, T2))∩{F̃ > 0}) and ṽ
is a weak solution of the following uniformly parabolic equation:∑

i, j

∂

∂yi

(
aij(y)

∂

∂yj
ṽ(y, t)

)
+
∑
i

bi(y, t)
∂ṽ

∂yi
(y, t)− ṽt = ψ(ṽ(y, t)),(A.2)

in (N × (T1, T2)) ∩ {F̃ > 0}, where aij ∈ W 1,∞
loc (N ), bi ∈ L∞loc(N × [T1, T2]) are

independent of the function F .
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Let ν ∈ RN be such that |ν| = 1 and ∇G(x0) · ν = 0. We may choose the
coordinates (y1, . . . , yN ) in such a way that ∇h1(x0) = ν, ∇hi(x0) · ∇hj(x0) = δij
and aij(0) = δij.

If F ∈ C1, ∇F ∈ Cα,α2 in a neighborhood of {F = 0} up to {G = 0}, ∇F (x, t) ·
∇G(x) = 0 for every (x, t) in that neighborhood such that G(x) = 0, and |∇F | ≥
c > 0 on {F = 0}, then there holds that F̃ ∈ C1, ∇F̃ ∈ Cα,α2 in the corresponding
neighborhood of {F̃ = 0} and ∇F̃ 6= 0 on {F̃ = 0}.

Moreover, if v(x, T1) ∈ C1+α in a neighborhood of {F (x, T1) = 0} up to {G = 0},
∇v(x, T1) · ∇G(x) = 0 for every x in that neighborhood such that G(x) = 0, there
holds that ṽ(y, T1) ∈ C1+α in the corresponding neighborhood of {F̃ (y, T1) = 0}.

Proof. Let r > 0 be small so that there exists a regular C3 parameterization σ of
{G = 0} ∩ Br(x0) in the variables y′ = (y1, . . . , yN−1) in a neighborhood of the
origin in RN−1. Let η(x) be the interior unit normal to {G > 0} at x ∈ {G = 0}.
Then if r is taken small enough, every point x ∈ Br(x0) can be written in a unique
way as

x = σ(y′) + yNη(σ(y′)) := h−1(y)

with y ∈ N a neighborhood of the origin in RN and h ∈ C2(Br(x0),N ) with
nonvanishing Jacobian in Br(x0). Then h(O ∩Br(x0)) = N ∩ {yN > 0}.

Let ν ∈ RN be as in the statement. We may choose the parameterization σ
in such a way that σ(0) = x0, ∂σ

∂y1
(0) = ν and { ∂σ∂yi (0)}1≤i≤N−1 are orthonormal

vectors.
Let ṽ and F̃ as in the statement. Then ṽ is a continuous function in (N ×

[T1, T2]) ∩ {F̃ ≥ 0}. Since v is a weak solution to (A.1), it is easy to see that ṽ is a
weak solution to

∑
i, j

∂

∂yi

(
aij(y)

∂

∂yj
ṽ(y, t)

)
+
∑
i

bi(y, t)
∂ṽ

∂yi
(y, t)− ṽt = ψ(ṽ(y, t))

in (N × (T1, T2)) ∩ {F̃ > 0} ∩ {yN > 0},∑
i, j

aij
∂ṽ

∂yj
ηi = 0 on (N × (T1, T2)) ∩ {F̃ > 0} ∩ {yN = 0}.

Here bi ∈ L∞ and aij(y) = ∇hi(x) · ∇hj(x) , y = h(x). For yN < 0 let

bi(y, t) =

{
bi(y′,−yN , t) if i < N,

−bi(y′,−yN , t) if i = N,

and

aij(y) =

{
aij(y′,−yN) if i < N and j < N or i = j = N,

−aij(y′,−yN) if i = N and j < N or i < N and j = N.

Then ṽ is a weak solution to (A.2) in (N × (T1, T2)) ∩ {F̃ > 0}.
Let us see that ∑

i, j

aij(y)ξiξj ≥ λ|ξ|2(A.3)
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for some λ > 0. In fact, for yN ≥ 0∑
i, j

aij(y)ξiξj =
∑
i, j

∇hi(x)ξi · ∇hj(x)ξj = |(Dh(x))T ξ|2 ≥ λ|ξ|2.

From the fact that (A.3) holds for yN ≥ 0 and from the definition of aij we see that
(A.3) holds in {yN < 0}.

Clearly, bi ∈ L∞loc(N × [T1, T2]). Let us see that aij ∈ W 1,∞
loc (N ). On one hand,

aij ∈ C1(N ∩ {yN ≥ 0}) ∩ C1(N ∩ {yN ≤ 0}). On the other hand, aij ∈ C(N )
since aiN (y′, 0) = 0 for i < N . Indeed, from the fact that h(σ(y′)+yNη(σ(y′))) = y
it follows that, on {G = 0}, ∇hi is tangent to {G = 0} if i < N and ∇hN = η.
Therefore,

∇hi(x) · ∇hN (x) = 0 for x ∈ {G = 0} if i < N.

In addition, it can be seen that ∇hi(x0) = ∂σ
∂yi

(0) for i < N . Thus, aij(0) = δij
and ∇h1(x0) = ν.

When F is smooth in a neighborhood of {F = 0}, we use the fact that ∇F (x, t) ·
∇G(x) = 0 on {G = 0} implies that ∂F̃

∂yN
= 0 on {yN = 0} in order to prove that

F̃ is smooth.
We proceed analogously with v(x, T1).

Remark A.1. In Proposition A.1 we may consider sub- or supersolutions instead of
solutions and a similar conclusion holds.
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