Tracially AF $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Huaxin Lin
- Trans. Amer. Math. Soc. 353 (2001), 693-722
- DOI: https://doi.org/10.1090/S0002-9947-00-02680-5
- Published electronically: September 15, 2000
- PDF | Request permission
Abstract:
Inspired by a paper of S. Popa and the classification theory of nuclear $C^*$-algebras, we introduce a class of $C^*$-algebras which we call tracially approximately finite dimensional (TAF). A TAF $C^*$-algebra is not an AF-algebra in general, but a “large” part of it can be approximated by finite dimensional subalgebras. We show that if a unital simple $C^*$-algebra is TAF then it is quasidiagonal, and has real rank zero, stable rank one and weakly unperforated $K_0$-group. All nuclear simple $C^*$-algebras of real rank zero, stable rank one, with weakly unperforated $K_0$-group classified so far by their $K$-theoretical data are TAF. We provide examples of nonnuclear simple TAF $C^*$-algebras. A sufficient condition for unital nuclear separable quasidiagonal $C^*$-algebras to be TAF is also given. The main results include a characterization of simple rational AF-algebras. We show that a separable nuclear simple TAF $C^*$-algebra $A$ satisfying the Universal Coefficient Theorem and having $K_1(A)=0$ and $K_0(A)=\mathbf {Q}$ is isomorphic to a simple AF-algebra with the same $K$-theory.References
- Charles A. Akemann and Frederic W. Shultz, Perfect $C^\ast$-algebras, Mem. Amer. Math. Soc. 55 (1985), no. 326, xiii+117. MR 787540, DOI 10.1090/memo/0326
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Bruce Blackadar and David Handelman, Dimension functions and traces on $C^{\ast }$-algebras, J. Functional Analysis 45 (1982), no. 3, 297–340. MR 650185, DOI 10.1016/0022-1236(82)90009-X
- Bruce Blackadar and Eberhard Kirchberg, Generalized inductive limits of finite-dimensional $C^*$-algebras, Math. Ann. 307 (1997), no. 3, 343–380. MR 1437044, DOI 10.1007/s002080050039
- B. Blackadar and E. Kirchberg, Inner quasidiagonality and strong NF algebras, preprint.
- Bruce Blackadar, Alexander Kumjian, and Mikael Rørdam, Approximately central matrix units and the structure of noncommutative tori, $K$-Theory 6 (1992), no. 3, 267–284. MR 1189278, DOI 10.1007/BF00961466
- Lawrence G. Brown, Interpolation by projections in $C^*$-algebras of real rank zero, J. Operator Theory 26 (1991), no. 2, 383–387. MR 1225522
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Man Duen Choi and Edward G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, DOI 10.2307/1970968
- Man Duen Choi and Edward G. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no. 2, 156–209. MR 0430809, DOI 10.1016/0022-1236(77)90052-0
- Man Duen Choi, The full $C^{\ast }$-algebra of the free group on two generators, Pacific J. Math. 87 (1980), no. 1, 41–48. MR 590864, DOI 10.2140/pjm.1980.87.41
- Joachim Cuntz, The structure of multiplication and addition in simple $C^*$-algebras, Math. Scand. 40 (1977), no. 2, 215–233. MR 500176, DOI 10.7146/math.scand.a-11691
- Marius Dădărlat, Reduction to dimension three of local spectra of real rank zero $C^*$-algebras, J. Reine Angew. Math. 460 (1995), 189–212. MR 1316577, DOI 10.1515/crll.1995.460.189
- M. Dadarlat, Nonnuclear subalgebras of AF algebras, preprint.
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762, DOI 10.1090/cbms/046
- George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no. 1, 29–44. MR 397420, DOI 10.1016/0021-8693(76)90242-8
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- George A. Elliott, The classification problem for amenable $C^*$-algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 922–932. MR 1403992
- George A. Elliott and David E. Evans, The structure of the irrational rotation $C^*$-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. MR 1247990, DOI 10.2307/2946553
- George A. Elliott and Guihua Gong, On the classification of $C^*$-algebras of real rank zero. II, Ann. of Math. (2) 144 (1996), no. 3, 497–610. MR 1426886, DOI 10.2307/2118565
- George A. Elliott, Guihua Gong, Huaxin Lin, and Cornel Pasnicu, Abelian $C^*$-subalgebras of $C^*$-algebras of real rank zero and inductive limit $C^*$-algebras, Duke Math. J. 85 (1996), no. 3, 511–554. MR 1422356, DOI 10.1215/S0012-7094-96-08520-8
- Guihua Gong, On inductive limits of matrix algebras over higher-dimensional spaces. I, II, Math. Scand. 80 (1997), no. 1, 41–55, 56–100. MR 1466905, DOI 10.7146/math.scand.a-12611
- K. R. Goodearl, Notes on a class of simple $C^\ast$-algebras with real rank zero, Publ. Mat. 36 (1992), no. 2A, 637–654 (1993). MR 1209829, DOI 10.5565/PUBLMAT_{3}62A92_{2}3
- Eberhard Kirchberg, On nonsemisplit extensions, tensor products and exactness of group $C^*$-algebras, Invent. Math. 112 (1993), no. 3, 449–489. MR 1218321, DOI 10.1007/BF01232444
- Eberhard Kirchberg, Exact $\textrm {C}^*$-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 943–954. MR 1403994
- E. Kirchberg, The classification of purely infinite $C^*$-algebras using Kasparov’s theory, third draft.
- E. Kirchberg and N. C. Phillips, Embedding of exact C*-algebras and continuous fields in the Cuntz algebra $O_2$, preprint.
- Hua Xin Lin, Skeleton $C^*$-subalgebras, Canad. J. Math. 44 (1992), no. 2, 324–341. MR 1162347, DOI 10.4153/CJM-1992-022-7
- Huaxin Lin, Approximation by normal elements with finite spectra in $C^\ast$-algebras of real rank zero, Pacific J. Math. 173 (1996), no. 2, 443–489. MR 1394400, DOI 10.2140/pjm.1996.173.443
- Huaxin Lin, Almost multiplicative morphisms and some applications, J. Operator Theory 37 (1997), no. 1, 121–154. MR 1438204
- Huaxin Lin, Extensions of $C(X)$ by simple $C^*$-algebras of real rank zero, Amer. J. Math. 119 (1997), no. 6, 1263–1289. MR 1481815, DOI 10.1353/ajm.1997.0040
- H. Lin, Stable approximate unitarily equivalence of homomorphisms, in press.
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- N. C. Phillips, A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114.
- Sorin Popa, On local finite-dimensional approximation of $C^*$-algebras, Pacific J. Math. 181 (1997), no. 1, 141–158. MR 1491038, DOI 10.2140/pjm.1997.181.141
- Mikael Rørdam, On the structure of simple $C^*$-algebras tensored with a UHF-algebra. II, J. Funct. Anal. 107 (1992), no. 2, 255–269. MR 1172023, DOI 10.1016/0022-1236(92)90106-S
- Hongbing Su, On the classification of $C^*$-algebras of real rank zero: inductive limits of matrix algebras over non-Hausdorff graphs, Mem. Amer. Math. Soc. 114 (1995), no. 547, viii+83. MR 1236167, DOI 10.1090/memo/0547
- Klaus Thomsen, On isomorphisms of inductive limit $C^*$-algebras, Proc. Amer. Math. Soc. 113 (1991), no. 4, 947–953. MR 1087472, DOI 10.1090/S0002-9939-1991-1087472-1
- Simon Wassermann, Exact $C^*$-algebras and related topics, Lecture Notes Series, vol. 19, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994. MR 1271145
- Shuang Zhang, Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. I, Pacific J. Math. 155 (1992), no. 1, 169–197. MR 1174483, DOI 10.2140/pjm.1992.155.169
- Shuang Zhang, A property of purely infinite simple $C^*$-algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 717–720. MR 1010004, DOI 10.1090/S0002-9939-1990-1010004-X
- Shuang Zhang, Matricial structure and homotopy type of simple $C^*$-algebras with real rank zero, J. Operator Theory 26 (1991), no. 2, 283–312. MR 1225518
Bibliographic Information
- Huaxin Lin
- Affiliation: Department of Mathematics, East China Normal University, Shanghai, China
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Email: hxlin@noether.uoregon.edu
- Received by editor(s): May 5, 1998
- Received by editor(s) in revised form: April 3, 1999
- Published electronically: September 15, 2000
- Additional Notes: Research partially supported by NSF grants DMS 9801482.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 693-722
- MSC (2000): Primary 46L05, 46L35
- DOI: https://doi.org/10.1090/S0002-9947-00-02680-5
- MathSciNet review: 1804513