Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation
HTML articles powered by AMS MathViewer
- by Daniel Tataru
- Trans. Amer. Math. Soc. 353 (2001), 795-807
- DOI: https://doi.org/10.1090/S0002-9947-00-02750-1
- Published electronically: October 23, 2000
- PDF | Request permission
Abstract:
The aim of this article is twofold. First we consider the wave equation in the hyperbolic space $\mathbb H^n$ and obtain the counterparts of the Strichartz type estimates in this context. Next we examine the relationship between semilinear hyperbolic equations in the Minkowski space and in the hyperbolic space. This leads to a simple proof of the recent result of Georgiev, Lindblad and Sogge on global existence for solutions to semilinear hyperbolic problems with small data. Shifting the space-time Strichartz estimates from the hyperbolic space to the Minkowski space yields weighted Strichartz estimates in $\mathbb R^{n} \times \mathbb R$ which extend the ones of Georgiev, Lindblad, and Sogge.References
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9
- William O. Bray, Aspects of harmonic analysis on real hyperbolic space, Fourier analysis (Orono, ME, 1992) Lecture Notes in Pure and Appl. Math., vol. 157, Dekker, New York, 1994, pp. 77–102. MR 1277819
- Philip Brenner, On $L_{p}-L_{p^{\prime } }$ estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. MR 387819, DOI 10.1007/BF01215290
- J. L. Clerc and E. M. Stein, $L^{p}$-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911–3912. MR 367561, DOI 10.1073/pnas.71.10.3911
- Robert T. Glassey, Existence in the large for $cmu=F(u)$ in two space dimensions, Math. Z. 178 (1981), no. 2, 233–261. MR 631631, DOI 10.1007/BF01262042
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50–68. MR 1351643, DOI 10.1006/jfan.1995.1119
- Vladimir Georgiev, Hans Lindblad, and Christopher D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (1997), no. 6, 1291–1319. MR 1481816, DOI 10.1353/ajm.1997.0038
- Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), no. 3, 485–509. MR 1078267, DOI 10.2307/1971427
- Manoussos G. Grillakis, Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math. 45 (1992), no. 6, 749–774. MR 1162370, DOI 10.1002/cpa.3160450604
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Fritz John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), no. 1-3, 235–268. MR 535704, DOI 10.1007/BF01647974
- Hideo Kubo, On the critical decay and power for semilinear wave equations in odd space dimensions, Discrete Contin. Dynam. Systems 2 (1996), no. 2, 173–190. MR 1382505, DOI 10.3934/dcds.1996.2.173
- Hans Lindblad and Christopher D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), no. 2, 357–426. MR 1335386, DOI 10.1006/jfan.1995.1075
- Hans Lindblad and Christopher D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118 (1996), no. 5, 1047–1135. MR 1408499, DOI 10.1353/ajm.1996.0042
- Hartmut Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984), no. 2, 261–270. MR 731347, DOI 10.1007/BF01181697
- Irving Segal, Space-time decay for solutions of wave equations, Advances in Math. 22 (1976), no. 3, 305–311. MR 492892, DOI 10.1016/0001-8708(76)90097-9
- Thomas C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations 52 (1984), no. 3, 378–406. MR 744303, DOI 10.1016/0022-0396(84)90169-4
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
- Yi Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Partial Differential Equations 8 (1995), no. 2, 135–144. MR 1331521
Bibliographic Information
- Daniel Tataru
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08540
- Address at time of publication: Department of Mathematics, Northwestern University, Evanston, Illinois 08540
- MR Author ID: 267163
- Email: tataru@math.nwu.edu
- Received by editor(s): October 10, 1997
- Published electronically: October 23, 2000
- Additional Notes: Research partially supported by NSF grant DMS-9622942 and by an Alfred P. Sloan fellowship
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 795-807
- MSC (2000): Primary 35L05, 35L70; Secondary 58J45
- DOI: https://doi.org/10.1090/S0002-9947-00-02750-1
- MathSciNet review: 1804518