A bounding question for almost flat manifolds
HTML articles powered by AMS MathViewer
- by Shashidhar Upadhyay
- Trans. Amer. Math. Soc. 353 (2001), 963-972
- DOI: https://doi.org/10.1090/S0002-9947-00-02669-6
- Published electronically: September 15, 2000
- PDF | Request permission
Abstract:
We study bounding question for almost flat manifolds by looking at the equivalent description of them as infranilmanifolds $\Gamma \backslash L\rtimes G/G$. We show that infranilmanifolds $\Gamma \backslash L \rtimes G/G$ bound if $L$ is a 2-step nilpotent group and $G$ is finite cyclic and acts trivially on the center of the nilpotent Lie group $L$.References
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- F. Thomas Farrell and Smilka Zdravkovska, Do almost flat manifolds bound?, Michigan Math. J. 30 (1983), no. 2, 199–208. MR 718265, DOI 10.1307/mmj/1029002850
- Marc W. Gordon, The unoriented cobordism classes of compact flat Riemannian manifolds, J. Differential Geometry 15 (1980), no. 1, 81–90 (1981). MR 602441
- M. Gromov, Almost flat manifolds, J. Differential Geometry 13 (1978), no. 2, 231–241. MR 540942, DOI 10.4310/jdg/1214434488
- Gary C. Hamrick and David C. Royster, Flat Riemannian manifolds are boundaries, Invent. Math. 66 (1982), no. 3, 405–413. MR 662600, DOI 10.1007/BF01389221
- Czes Kosniowski and R. E. Stong, $(Z_{2})^{k}$-actions and characteristic numbers, Indiana Univ. Math. J. 28 (1979), no. 5, 725–743. MR 542333, DOI 10.1512/iumj.1979.28.28051
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234, DOI 10.1007/978-3-642-86426-1
- R. E. Stong, Equivariant bordism and $(Z_{2})^{k}$ actions, Duke Math. J. 37 (1970), 779–785. MR 271966, DOI 10.1215/S0012-7094-70-03793-2
Bibliographic Information
- Shashidhar Upadhyay
- Affiliation: Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, New York 13902-6000
- Address at time of publication: Bloomberg L. P., 499 Park Avenue, New York, New York 10022
- Email: sdhar@math.binghamton.edu
- Received by editor(s): August 3, 1999
- Published electronically: September 15, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 963-972
- MSC (1991): Primary 57R19, 57R20; Secondary 55N22
- DOI: https://doi.org/10.1090/S0002-9947-00-02669-6
- MathSciNet review: 1804410