Algebraic isomorphisms of limit algebras
HTML articles powered by AMS MathViewer
- by A. P. Donsig, T. D. Hudson and E. G. Katsoulis
- Trans. Amer. Math. Soc. 353 (2001), 1169-1182
- DOI: https://doi.org/10.1090/S0002-9947-00-02714-8
- Published electronically: November 17, 2000
- PDF | Request permission
Abstract:
We prove that algebraic isomorphisms between limit algebras are automatically continuous, and consider the consequences of this result. In particular, we give partial solutions to a conjecture and an open problem by Power. As a further consequence, we describe epimorphisms between various classes of limit algebras.References
- Richard L. Baker, Triangular UHF algebras, J. Funct. Anal. 91 (1990), no. 1, 182–212. MR 1054118, DOI 10.1016/0022-1236(90)90052-M
- H. G. Dales, R. J. Loy, and G. A. Willis, Homomorphisms and derivations from ${\scr B}(E)$, J. Funct. Anal. 120 (1994), no. 1, 201–219. MR 1262253, DOI 10.1006/jfan.1994.1030
- Allan P. Donsig and Alan Hopenwasser, Order preservation in limit algebras, J. Funct. Anal. 133 (1995), no. 2, 342–394. MR 1354035, DOI 10.1006/jfan.1995.1129
- A. Donsig, A. Hopenwasser, T.D. Hudson, M.P. Lamoureux, and B. Solel, Meet irreducible ideals in direct limit algebras, Math. Scand. (to appear).
- Allan P. Donsig and Timothy D. Hudson, The lattice of ideals of a triangular AF algebra, J. Funct. Anal. 138 (1996), no. 1, 1–39. MR 1391629, DOI 10.1006/jfan.1996.0055
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- A. Hopenwasser and S. C. Power, Classification of limits of triangular matrix algebras, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 107–121. MR 1200190, DOI 10.1017/S0013091500005927
- T. D. Hudson, Ideals in triangular AF algebras, Proc. London Math. Soc. (3) 69 (1994), no. 2, 345–376. MR 1281969, DOI 10.1112/plms/s3-69.2.345
- T. D. Hudson and E. G. Katsoulis, Primitive triangular UHF algebras, J. Funct. Anal. 160 (1998), no. 1, 1–27. MR 1658724, DOI 10.1006/jfan.1998.3336
- B. E. Johnson, Continuity of homomorphisms of algebras of operators, J. London Math. Soc. 42 (1967), 537–541. MR 215110, DOI 10.1112/jlms/s1-42.1.537
- B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537–539. MR 211260, DOI 10.1090/S0002-9904-1967-11735-X
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR 719020
- Laura Mastrangelo, Paul S. Muhly, and Baruch Solel, Locating the radical of a triangular operator algebra, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 27–38. MR 1253280, DOI 10.1017/S0305004100071899
- Justin R. Peters and Yiu Tung Poon, Lexicographic TAF algebras, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4825–4855. MR 1443887, DOI 10.1090/S0002-9947-97-02040-0
- J. R. Peters, Y. T. Poon, and B. H. Wagner, Triangular AF algebras, J. Operator Theory 23 (1990), no. 1, 81–114. MR 1054818
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Yiu Tung Poon, A complete isomorphism invariant for a class of triangular UHF algebras, J. Operator Theory 27 (1992), no. 2, 221–230. MR 1249644
- Y. T. Poon and B. H. Wagner, $\textbf {Z}$-analytic TAF algebras and dynamical systems, Houston J. Math. 19 (1993), no. 2, 181–199. MR 1225457
- S. C. Power, On ideals of nest subalgebras of $C^\ast$-algebras, Proc. London Math. Soc. (3) 50 (1985), no. 2, 314–332. MR 772716, DOI 10.1112/plms/s3-50.2.314
- S. C. Power, Classification of tensor products of triangular operator algebras, Proc. London Math. Soc. (3) 61 (1990), no. 3, 571–614. MR 1069516, DOI 10.1112/plms/s3-61.3.571
- S. C. Power, The classification of triangular subalgebras of AF $C^*$-algebras, Bull. London Math. Soc. 22 (1990), no. 3, 269–272. MR 1041142, DOI 10.1112/blms/22.3.269
- Stephen C. Power, Algebraic orders on $K_0$ and approximately finite operator algebras, J. Operator Theory 27 (1992), no. 1, 87–106. MR 1241116
- Stephen C. Power, Limit algebras: an introduction to subalgebras of $C^*$-algebras, Pitman Research Notes in Mathematics Series, vol. 278, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992. MR 1204657
- S. C. Power, Infinite lexicographic products of triangular algebras, Bull. London Math. Soc. 27 (1995), no. 3, 273–277. MR 1328704, DOI 10.1112/blms/27.3.273
- S. C. Power, Lexicographic semigroupoids, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 365–377. MR 1389629, DOI 10.1017/S0143385700008853
- —, Errata for Limit algebras, available from http://www.maths.lancs.ac.uk/~power/.
- C. Qiu, Algebra isomorphisms of triangular operator algebras, preprint, 1993.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Allan M. Sinclair, Homomorphisms from $C_{0}(R)$, J. London Math. Soc. (2) 11 (1975), no. 2, 165–174. MR 377517, DOI 10.1112/jlms/s2-11.2.165
- Baruch Solel and Belisario A. Ventura, Analyticity in triangular algebras, J. Operator Theory 28 (1992), no. 2, 357–370. MR 1273051
- Belisario A. Ventura, Strongly maximal triangular AF algebras, Internat. J. Math. 2 (1991), no. 5, 567–598. MR 1124284, DOI 10.1142/S0129167X91000326
Bibliographic Information
- A. P. Donsig
- Affiliation: Department of Mathematics and Statistics, University of Nebraska at Lincoln, Lincoln, Nebraska 68588-0323
- MR Author ID: 332957
- Email: adonsig@math.unl.edu
- T. D. Hudson
- Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858–4353
- Email: tdh@math.ecu.edu
- E. G. Katsoulis
- Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858–4353
- MR Author ID: 99165
- Email: katsoulise@mail.ecu.edu
- Received by editor(s): April 6, 1998
- Received by editor(s) in revised form: October 7, 1999
- Published electronically: November 17, 2000
- Additional Notes: Research partially supported by an NSF grant
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 1169-1182
- MSC (2000): Primary 47D25, 46K50, 46H40
- DOI: https://doi.org/10.1090/S0002-9947-00-02714-8
- MathSciNet review: 1804417