Measuring the tameness of almost convex groups
HTML articles powered by AMS MathViewer
- by Susan Hermiller and John Meier
- Trans. Amer. Math. Soc. 353 (2001), 943-962
- DOI: https://doi.org/10.1090/S0002-9947-00-02717-3
- Published electronically: October 11, 2000
- PDF | Request permission
Abstract:
A 1-combing for a finitely presented group consists of a continuous family of paths based at the identity and ending at points $x$ in the 1-skeleton of the Cayley 2-complex associated to the presentation. We define two functions (radial and ball tameness functions) that measure how efficiently a 1-combing moves away from the identity. These functions are geometric in the sense that they are quasi-isometry invariants. We show that a group is almost convex if and only if the radial tameness function is bounded by the identity function; hence almost convex groups, as well as certain generalizations of almost convex groups, are contained in the quasi-isometry class of groups admitting linear radial tameness functions.References
- Stephen G. Brick, Quasi-isometries and amalgamations of tame combable groups, Internat. J. Algebra Comput. 5 (1995), no. 2, 199–204. MR 1328551, DOI 10.1142/S0218196795000136
- James W. Cannon, Almost convex groups, Geom. Dedicata 22 (1987), no. 2, 197–210. MR 877210, DOI 10.1007/BF00181266
- David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694, DOI 10.1201/9781439865699
- S. M. Gersten, Dehn functions and $l_1$-norms of finite presentations, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 23, Springer, New York, 1992, pp. 195–224. MR 1230635, DOI 10.1007/978-1-4613-9730-4_{9}
- Steve M. Gersten, Isoperimetric and isodiametric functions of finite presentations, Geometric group theory, Vol. 1 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 181, Cambridge Univ. Press, Cambridge, 1993, pp. 79–96. MR 1238517, DOI 10.1017/CBO9780511661860.008
- Susan M. Hermiller and John Meier, Tame combings, almost convexity and rewriting systems for groups, Math. Z. 225 (1997), no. 2, 263–276. MR 1464930, DOI 10.1007/PL00004311
- Cynthia Hog-Angeloni and Wolfgang Metzler (eds.), Two-dimensional homotopy and combinatorial group theory, London Mathematical Society Lecture Note Series, vol. 197, Cambridge University Press, Cambridge, 1993. MR 1279174, DOI 10.1017/CBO9780511629358
- Donald E. Knuth and Peter B. Bendix, Simple word problems in universal algebras, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 263–297. MR 0255472
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Michael Machtey and Paul Young, An introduction to the general theory of algorithms, The Computer Science Library: Theory of Computation Series, North-Holland, New York-Oxford-Shannon, 1978. MR 0483344
- Michael L. Mihalik, Compactifying coverings of $3$-manifolds, Comment. Math. Helv. 71 (1996), no. 3, 362–372. MR 1418943, DOI 10.1007/BF02566425
- Michael L. Mihalik, Group extensions and tame pairs, Trans. Amer. Math. Soc. 351 (1999), no. 3, 1095–1107. MR 1443200, DOI 10.1090/S0002-9947-99-02015-2
- Michael L. Mihalik and Steven T. Tschantz, Tame combings of groups, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4251–4264. MR 1390045, DOI 10.1090/S0002-9947-97-01772-8
- V. Poénaru, Almost convex groups, Lipschitz combing, and $\pi ^\infty _1$ for universal covering spaces of closed $3$-manifolds, J. Differential Geom. 35 (1992), no. 1, 103–130. MR 1152227, DOI 10.4310/jdg/1214447807
- V. Poénaru, Geometry “à la Gromov” for the fundamental group of a closed $3$-manifold $M^3$ and the simple connectivity at infinity of $\~M^3$, Topology 33 (1994), no. 1, 181–196. MR 1259521, DOI 10.1016/0040-9383(94)90041-8
- V. Poénaru and C. Tanasi, $k$-weakly almost convex groups and $\pi ^\infty _1\~M{}^3$, Geom. Dedicata 48 (1993), no. 1, 57–81. MR 1245573, DOI 10.1007/BF01265676
- Charles C. Sims, Computation with finitely presented groups, Encyclopedia of Mathematics and its Applications, vol. 48, Cambridge University Press, Cambridge, 1994. MR 1267733, DOI 10.1017/CBO9780511574702
- Carsten Thiel, Zur fast-Konvexität einiger nilpotenter Gruppen, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 234, Universität Bonn, Mathematisches Institut, Bonn, 1992 (German). Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991. MR 1237823
- Thomas W. Tucker, Non-compact $3$-manifolds and the missing-boundary problem, Topology 13 (1974), 267–273. MR 353317, DOI 10.1016/0040-9383(74)90019-6
Bibliographic Information
- Susan Hermiller
- Affiliation: Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323
- MR Author ID: 311019
- Email: smh@math.unl.edu
- John Meier
- Affiliation: Department of Mathematics, Lafayette College, Easton, Pennsylvania 18042
- Email: meierj@lafayette.edu
- Received by editor(s): June 21, 1999
- Published electronically: October 11, 2000
- Additional Notes: Susan Hermiller acknowledges support from NSF grant DMS-9623088
John Meier acknowledges support from NSF RUI grant DMS-9704417 - © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 943-962
- MSC (2000): Primary 20F65; Secondary 20F69, 57M07
- DOI: https://doi.org/10.1090/S0002-9947-00-02717-3
- MathSciNet review: 1804409