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TWO-WEIGHT NORM INEQUALITIES FOR CESÀRO MEANS
OF LAGUERRE EXPANSIONS

BENJAMIN MUCKENHOUPT AND DAVID W. WEBB

Abstract. Two-weight Lp norm inequalities are proved for Cesàro means
of Laguerre polynomial series and for the supremum of these means. These
extend known norm inequalities, even in the single power weight and “un-
weighted” cases, by including all values of p ≥ 1 for all positive orders of the
Cesàro summation and all values of the Laguerre parameter α > −1. Almost
everywhere convergence results are obtained as a corollary. For the Cesàro
means the hypothesized conditions are shown to be necessary for the norm
inequalities. Necessity results are also obtained for the norm inequalities with
the supremum of the Cesàro means; in particular, for the single power weight
case the conditions are necessary and sufficient for summation of order greater
than one sixth.

1. Introduction

Let σ(α,δ)
n (f, x) be the nth Cesàro mean of order δ for the expansion of f(x) in

orthonormalized Laguerre polynomials L(α)
n (x). The purpose of this paper is to

prove inequalities of the form

sup
n≥0

∥∥∥σ(α,δ)
n (f, x)xa(1 + x)b−a

∥∥∥
p
≤ C‖f(x)xA(1 + x)B−A‖p(1.1)

for δ > 0, α > −1, 1 ≤ p ≤ ∞ and∥∥∥∥sup
n≥0

(
|σ(α,δ)
n (f, x)|

)
xa(1 + x)b−a

∥∥∥∥
p

≤ C‖f(x)xA(1 + x)B−A‖p(1.2)

for δ > 0, α > −1, 1 < p ≤ ∞, where ‖g‖p denotes unweighted Lp norm of g
on [0,∞) and C is independent of f . A weak type result for supn≥0|σ

(α,δ)
n (f, x)|

is proved for p = 1. Immediate consequences are mean convergence results and
pointwise almost everywhere convergence results, and the latter are stronger than
what can be obtained from (1.2) with the same weight on both sides. In their full
generality the conditions on a, b, A and B required here to make (1.1) and (1.2)
hold are complicated. Detailed statements can be found in §2. For many readers,
however, the consequences of the general theorems that are stated in this section
will be of more interest. These are the results with the single weight xr replacing
the weights xa(1 + x)b−a and xA(1 + x)B−A in (1.1) and (1.2). Even these simple
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consequences generalize and strengthen previous known results by allowing more
values of α, δ, p and r.

The norm inequalities proved here are based on a new estimate for the kernel
of σ(α,δ)

n obtained in [14]. This has let us obtain conditions on a, b, A and B that
are necessary and sufficient for (1.1) to hold. For (1.2) the conditions used are
necessary and sufficient for the operator with the estimate as its kernel. For (1.2)
thirteen inequalities are assumed in the sufficiency proof. Ten of these are shown to
be necessary. One is not necessary, as shown in §10. For the other two we make no
assertion concerning their necessity. However, slightly weaker versions of those two
inequalities are proved necessary for (1.1), and, of course, these weaker versions are
necessary for (1.2) since (1.2) implies (1.1).

Most authors have chosen the two weight functions in inequalities (1.1) and
(1.2) to be the same and equal to various “natural” powers of x. Our results
when the weight functions are a single power of x are stated below as Theorems
(1.3), (1.13), (1.16), (1.19) and (1.20). They are consequences of the more general
Theorems (2.29), (2.30), (2.31), (2.34), (9.3) and (10.2); some comments on how
this reduction is done in a few not entirely obvious cases are given at the end of
§2. It is interesting to note that for the theorems stated here x1/2−1/p is the most
natural weight to use since for this weight all the restrictions on r are satisfied
for all α > −1 and δ > 0. As a result, for this weight function and α > −1,
(1.4) holds for 4/(6δ + 3) ≤ p ≤ 4/(1 − 6δ) if 0 < δ ≤ 1/6, (1.14) holds for
2/(1 + 6δ) < p < 2/(1 − 6δ) if 0 < δ < 1/6 and for 1 < p ≤ ∞ if δ ≥ 1/6.
Furthermore, limn→∞ σ

(α,δ)
n (f, x) = f(x) almost everywhere if α > −1, δ > 0 and∫∞

0
xp/2−1|f(x)|pdx <∞ for some p satisfying 1 ≤ p <∞.

Theorem (1.3). If α > −1, 1 ≤ p ≤ ∞ and δ > 0, then

sup
n≥0

∥∥∥σ(α,δ)
n (f, x)xr

∥∥∥
p
≤ C ‖f(x)xr‖p(1.4)

holds with C independent of f if and only if

δ ≥ 2
3p
− 1

2
,(1.5)

δ ≥ 1
6
− 2

3p
,(1.6)

r > −1
p
− α

2
(≥ if p =∞),(1.7)

r >
1
4
− δ

2
− 1
p
,(1.8)

r ≥ − δ
2
− 2

3p
(> if δ =

2
3p
− 1

2
),(1.9)

r < 1 +
α

2
− 1
p

(≤ if p = 1),(1.10)

r <
3
4

+
δ

2
− 1
p

(1.11)

and

r ≤ 2
3

+
δ

2
− 2

3p
(< if δ =

1
6
− 2

3p
).(1.12)
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Theorem (1.13). If α > −1, 1 < p ≤ ∞ and δ > 1/6, then∥∥∥∥sup
n≥0

(|σ(α,δ)
n (f, x)|)xr

∥∥∥∥
p

≤ C ‖f(x)xr‖p(1.14)

holds with C independent of f if and only if (1.7)–(1.10) hold and

r ≤ 2
3

+
δ

2
− 1
p
.(1.15)

These conditions are also sufficient for δ = 1/6 with the strengthened assumption
that the inequality is strict in (1.15), and necessary for 0 < δ ≤ 1/6.

Theorem (1.16). If 0 < δ < 1/6, α > −1, 2/(1 + 6δ) < p < 2/(1− 6δ),

1
2
− 1
p

+ max(−3δ(α+ 1),−2δ) < r <
1
2
− 1
p

+ min
(

3δ(α+ 1),
3δ
2

)
(1.17)

and

r > max
(

1
3
− 2

3p
− 5δ

2
,
1
6
− 1

3p
− 7δ

2

)
,(1.18)

then (1.14) holds with C independent of f .

Theorem (1.19). If α > −1, δ ≥ 1/6, −1 − α/2 < r < α/2, −δ/2 − 2/3 ≤ r ≤
δ/2− 1/3 with strict inequality in the last two if δ = 1/6 and E(µ) is the set where
xrsup
n≥0

(|σ(α,δ)
n (f, x)|) > µ, then |Eµ| ≤ (C/µ)

∫∞
0 |f(x)|xrdx with C independent of

f and µ.

Theorems (1.13) and (1.19) imply almost everywhere convergence results. How-
ever, better results can be obtained from the two weight results. This is because
almost everywhere convergence will follow from weak or strong type inequalities
for supn≥0(|σ(α,δ)

n (f, x)|) for any weight on the left side of the type considered.
Theorem (2.34) gives the following.

Theorem (1.20). If δ > 0, α > −1, 1 ≤ p < ∞, ‖xrf(x)‖p < ∞, r ≤ 3/4 +
δ/2− 1/p, (1.10), r ≥ −1/4− δ− 1/3p (> if p = 4/3) and r ≥ 1/4− δ − 1/p, then
lim
n→∞

σ(α,δ)
n (f, x) = f(x) for almost every x.

Previous results concerning the inequalities (1.1) and (1.2) and almost every-
where convergence include the following. Poiani in Theorem 1, page 10 of [7]
considered the case a = A and b = B in (1.1) for δ = 1 and α > −1. She obtained
the same results as Theorem (2.29) when specialized to this case with some minor
differences. She did not include the possibilities of a = −α/2 and a = 5/4 when
p = ∞ nor a = α/2 and a = −5/4 when p = 1. In addition, she included the
case a + b = −4/(3p) + 7/3, b = 19/12 − 1/(3p) for 4 < p ≤ ∞ and the case
a + b = −4/(3p)− 1, b = −5/4 − 1/(3p) for 1 ≤ p < 4/3; these cases violate the
necessity conditions in Theorem (2.29).

Other authors have used a fixed power of x as a weight function. Markett,
Theorem 1, page 420 of [3] proved (1.4) for r = 0 with α ≥ 0 and 0 < δ ≤ 1/2
provided

1− 2δ
4

<
1
p
<

3 + 2δ
4

.(1.21)
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Theorem (1.3) gives this result for α > −1 provided

max
(

1− 2δ
4

,
−α
2

)
<

1
p
< min

(
3 + 2δ

4
,
α+ 2

2

)
.(1.22)

Stempak in Theorem 1.1, page 318 of [10] obtained almost everywhere convergence
of σ(α,δ)

n (f, x) for α ≥ 0 and δ > α + 2/3 provided ‖f(x)‖p < ∞ and 1 ≤ p < ∞.
Theorem (1.20) gives this almost everywhere convergence for 1 ≤ p < ∞ provided
δ ≥ max(2/p− 3/2, 1/4− 1/p), α > −1 and α > (2/p)− 2 (≥ for p = 1).

Results with weight xr for r = α/p − α/2 arise naturally if the functions
x−αL(α)

n (x2) are viewed as an orthogonal system on [0,∞) with measure x2α+1dx or
the functions x−α/2L(α)

n (x) are viewed as orthogonal with measure xαdx. Thanga-
velu in Theorem 6.2.2 on page 145 of [12] considered an inequality equivalent to
(1.4) with this value of r for α ≥ 0. His result is that (1.4) holds for 1 ≤ p ≤ ∞ if
δ > α+ 1/2, and for 0 < δ ≤ α+ 1/2 it holds provided

4α+ 4
2α+ 3 + 2δ

< p <
4α+ 4

2α+ 1− 2δ
.(1.23)

Theorem (1.3) gives this for α ≥ 0 and gives an extension to −1 < α < 0. For
−1/3 ≤ α < 0 Theorem (1.3) gives the range of p in (1.23) if −α/(4 + 6α) ≤ δ ≤
α+ 1/2 and

4
6δ + 3

≤ p ≤ 4
1− 6δ

(1.24)

if 0 < δ < −α/(4 + 6α). For −1 < α < −1/3 the result holds for 0 < δ ≤ 1/6
provided p satisfies (1.24). (Note that the condition (α + 2/3)/p > (α − δ)/2
resulting from (1.9) is implied by (α+ 1)/p > (1 + 2α− 2δ)/4 for α ≥ −2/3 and by
1/p < (1 + 6δ)/2 for −1 < α < −2/3. Similarly, the condition resulting from (1.12)
is implied by the other conditions.)

Stempak studied (1.14) for this value of r. In the comments before Proposition
4.3, page 325 of [10] he obtained this for α ≥ 0, δ > 0 and 1 ≤ p ≤ ∞ provided
p < 4α+2

1+2α−2δ for 0 < δ < α+ 1/2 and p > 6α+4
2+3α+3δ for 0 < δ < α + 2/3. Theorem

(1.13) holds for this r and 1 ≤ p ≤ ∞ provided p < 4α+4
1+2α−2δ for 1/6 ≤ δ < α+ 1/2

and p ≥ 6α+6
4+3α+3δ (> for δ = 1

6 ) for 1/6 ≤ δ < α + 2/3. For 0 < δ < 1/6, Theorem
(1.16) gives the ranges 2α+2

α+1+3δ < p < 2α+2
α+1−4δ for α ≥ −1/3, 2α+2

α+1+3δ < p < 2
1−6δ

for −1/2 ≤ α ≤ −1/3 and 2
1+6δ < p < 2

1−6δ for −1 < α ≤ −1/2.
For this value of r, Stempak in Proposition 4.3, page 325 of [10] also proved that

if ‖xrf(x)‖p < ∞ then σ
(α,δ)
n (f, x) converges to f(x) for almost every x provided

α ≥ 0, δ > 0, 1 ≤ p < ∞, p < 4α+2
1+2α−2δ if 0 < δ < α + 1/2 and p > 6α+4

3α+3δ+2

if 0 < δ < α + 2/3. For this value of r, Theorem (1.20) gives almost everywhere
convergence for α > −1/2 for the wider range

4α+ 4
3 + 2α+ 2δ

≤ p ≤ 4α+ 4
1 + 2α− 4δ

if 0 < δ < α/2 + 1/4, 4α+4
3+2α+2δ ≤ p <∞ if α/2 + 1/4 ≤ δ < α+ 1/2 and 1 ≤ p <∞

if δ ≥ α+ 1/2. For −1 < α ≤ −1/2 the convergence holds for 1 ≤ p <∞.
The weight xr with r = 1/4− 1/(2p) arises if the functions (2x)1/2L(α)

n (x2) are
taken as an orthonormal system on [0,∞) with Lebesgue measure. For this weight
Markett, Theorem 2, page 22 of [4] proved (1.4) with α = ±1/2 for 1 ≤ p ≤ ∞ if
δ > 1/2 and for 4/(2δ+3) < p < 4/(1−2δ) if 0 < δ < 1/2. Thangavelu in Theorem
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1, page 305 of [13] proved (1.4) with α ≥ 1/2 for 1 ≤ p ≤ ∞ if δ > 1/6. Theorem
(1.3) gives this result for 1 ≤ p ≤ ∞ if α > −1/2 and δ > 1/6; for α ≤ −1/2
it also requires 2/(3 + 2α) < p < −2/(1 + 2α) and for δ < 1/6 it also requires
4/(3 + 6δ) ≤ p ≤ 4/(1− 6δ).

Almost everywhere convergence results for this weight include Theorem 1.2, page
318 of [10], which gives this convergence for 1 ≤ p < ∞ if ‖f(x)xr‖p < ∞, α ≥ 0
and δ > α + 2/3. Thangavelu in Theorem 3, page 306 of [13] proved this for
1 ≤ p < ∞ if α ≥ 1/2 and δ > 1/6. Theorem (1.20) gives this for 1 ≤ p < ∞
if δ > 0 and α ≥ −1/2; for −1 < α < −1/2 there is the additional condition
p > 2/(3 + 2α).

The sufficiency proofs of (1.1) and (1.2) given here are direct and based on the
kernel estimate derived in [14]. The complexity of this kernel estimate, however,
requires the estimation of thirty-eight integral expressions. The resulting sufficient
conditions are complicated but in the case of (1.1) they are in fact also necessary
conditions. For (1.2) all but three of the fourteen inequalities used in the sufficiency
proof are shown to be necessary. Those three are necessary conditions for the norm
inequalilty for the operator based on the estimate. As shown in §10, one is not
necessary for (1.2) to hold. We conjecture that the other two are also not necessary
but note that they differ only slightly from conditions that are necessary.

The sufficiency proofs are given here as a series of lemmas in §§3-6. For these
proofs six basic lemmas suffice to obtain estimates of 28 of the 38 expressions that
arise when estimating (1.2) and 24 of the 38 expressions that arise when estimating
(1.1). These lemmas are proved for p = 1 and p =∞ in §3 and applied in §4 along
with an interpolation argument. When the variables are close to 4n + 2α + 2 or
to each other, the interpolation approach does not work and individual proofs are
given for these parts. A look at the conditions shows why there are problems with
an interpolation approach to all the parts. Some of the needed inequalities change
at p = 4/3 or p = 4, and weak inequalities become strong at those values of p. An
interpolation argument would require additional results for these two values of p,
and the weak type results needed for such an interpolation are false.

Throughout this paper C will be used for positive constants independent of f ,
n, x and y but not necessarily the same at every occurrence. Frequent use will be
made, without further comment, of the fact that for 0 < 2a < b and r 6= −1 we have∫ b
a
xrdx ≈ (ar+1 + br+1), where ≈ means that the symbol on the left is bounded

above and below by C times the expression on the right. Since all integrands are
nonnegative, integration sets may be enlarged during estimation without mention.
The symbol p′ = p/(p − 1), and χE(x) denotes the characteristic function of the
set E.

2. Definitions and results for 1 < p <∞

Let the Laguerre polynomials {L(α)
n (x)} be defined for α > −1 and nonnegative

integer n by the orthogonality condition∫ ∞
0

e−xxαL(α)
n (x)L(α)

m (x)dx =
Γ(n+ α+ 1)

n!
δmn

and the requirement that the leading term of L(α)
n (x) be (−x)n/n!. The orthonormal

functions L(α)
n (x)are defined by
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L(α)
n (x) =

(
n!

Γ(n+ α+ 1)

)1/2

e−x/2xα/2L(α)
n (x).(2.1)

For a fixed α > −1, nonnegative integer n and positive constants λ, η and ξ define
ν = ν(n) = 4n+ 2α+ 2,

Φ(α)
n (x) =


1 0 ≤x ≤ ν

exp

(
−η |ν − x|3/2

ν1/2

)
ν ≤x ≤ (1 + λ)ν

e−ξx (1 + λ)ν ≤x
and

M(α)
n (x) = xα/2

(
ν−1 + x

)−1/4−α/2 (
ν1/3 + |x− ν|

)−1/4

Φ(α)
n (x).(2.2)

It is known, see [1] page 699 and the theorem on page 289 of [5], that given α > −1
and λ > 0, there exist positive constants C, η and ξ such that |L(α)

n (x)| ≤ CM(α)
n (x)

holds for x > 0 and n ≥ 0 with C independent of x and n.
The nth Cesàro kernel of order δ is defined by

K(α,δ)
n (x, y) =

1
Aδn

n∑
k=0

Aδn−kL
(α)
k (x)L(α)

k (y),

where Aδn =
(
n+δ
n

)
and

σ(α,δ)
n (f, x) =

∫ ∞
0

K(α,δ)
n (x, y)f(y)dy.

To prove inequalities of the forms (1.1) and (1.2) we will use the fact from Theorem
C in §1 of [14] that given α > −1 and λ > 0, there are positive numbers η, ξ and
C such that for n ≥ 0, x > 0 and y > 0∣∣∣K(α,δ)

n (x, y)
∣∣∣ ≤ CG(α,δ)

n (x, y),(2.3)

where
G(α,δ)
n (x, y) = ν−δM(α)

n (x)M(α)
n (y)

×
(

(x+ y)
(
ν1/3 + |x− ν|+ |y − ν|

)2
x+ y + (x− y)2

(
ν1/3 + |x− ν|+ |y − ν|

))(1+δ)/2

.
(2.4)

Upper bounds for the left sides of (1.1) and (1.2) can, therefore, be obtained by
replacing K(α,δ)

n (x, y) by G
(α,δ)
n (x, y) and f(y) by |f(y)|. It will be convenient to

define τ = τ(α, δ, ν, x, y, a, b, A,B) by

τ = xa(1 + x)b−ay−A(1 + y)A−BG(α,δ)
n (x, y).(2.5)

To prove (1.1) it is sufficient to show that

sup
n≥0

∥∥∥∥∫ ∞
0

τ |f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p,(2.6)

and to prove (1.2) it is sufficient to show that∥∥∥∥sup
n≥0

∫ ∞
0

τ |f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p.(2.7)
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To do this we will need various estimates of τ . To make this easier for the reader
we note that

τ ≈ ν−δxa+α/2(1 + x)b−ay−A+α/2(1 + y)A−BΦ(α)
n (x)Φ(α)

n (y)

(ν−1 + x)1/4+α/2 (
ν1/3 + |x− ν|

)1/4 (ν−1 + y)1/4+α/2 (
ν1/3 + |y − ν|

)1/4
×
(

(x+ y)
(
ν1/3 + |x− ν|+ |y − ν|

)2
x+ y + (x− y)2(ν1/3 + |x− ν|+ |y − ν|)

)(1+δ)/2

.

(2.8)

The estimate to be used for Φ(α)
n in upper bounds for τ will be a simplified version

with λ = 1/2; we will estimate it as 1 when the argument is less than 3ν/2.
The sets of conditions that must be satisfied for the various theorems are fairly

complex. We will, therefore, assign names to these conditions here as follows: Np
for those used in estimates of the norm and Sp for those used in estimates of the
sup of the norm.

Parameters (a, b, A,B, α, δ) will be said to satisfy the Np conditions provided

a ≥ 1
4
− δ

2
− 1
p
,(2.9)

a > −α
2
− 1
p

(≥ if p =∞),(2.10)

A− a ≤ 0,(2.11)

A ≤ 3
4

+
δ

2
− 1
p
,(2.12)

A < 1 +
α

2
− 1
p

(≤ if p = 1),(2.13)

a+B ≥ −δ − 4
3p
,(2.14)

a+B ≥ 1
2
− δ − 2

p
,(2.15)

A+ b ≤ 3
2

+ δ − 2
p
,(2.16)

A+ b ≤ 4
3

+ δ − 4
3p
,(2.17)

b ≤ 3
4

+ δ − 1
p
,(2.18)

b ≤ 7
12

+ δ − 1
3p
,(2.19)

b−B ≤ δ +
1
2
− 2

3p
,(2.20)

b−B ≤ 0,(2.21)

b−B ≤ δ − 1
6

+
2
3p
,(2.22)

B ≥ −1
4
− δ − 1

3p
,(2.23)

B ≥ 1
4
− δ − 1

p
(2.24)

and in at least one of each of the following pairs the inequality is strict: (2.9) and
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(2.11) except for p = 1, (2.9) and (2.15), (2.11) and (2.12) except for p =∞, (2.12)
and (2.16), (2.14) and (2.15), (2.14) and (2.23), (2.15) and (2.24) except for p =∞,
(2.16) and (2.17), (2.16) and (2.18) except for p = 1, (2.17) and (2.19), (2.18) and
(2.19), (2.19) and (2.22), (2.20) and (2.23), (2.23) and (2.24).

Parameters (a, b, A,B, α, δ) will be said to satisfy the Sp conditions provided
they satisfy inequalities (2.10)–(2.15), (2.21), (2.23)–(2.24),

a >
1
4
− δ

2
− 1
p

(≥ if p =∞),(2.25)

A+ b ≤ 4
3

+ δ − 2
p
,(2.26)

b <
7
12

+ δ − 1
p

(≤ if p =∞),(2.27)

b−B ≤ δ − 1
6
,(2.28)

and in at least one of each of the following pairs the inequality is strict: (2.11) and
(2.12) except for p = ∞, (2.11) and (2.13), (2.11) and (2.25), (2.13) and (2.26),
(2.14) and (2.15), (2.14) and (2.23), (2.15) and (2.24) except for p =∞, (2.15) and
(2.25), (2.23) and (2.24), (2.23) and (2.28) for p = 1, (2.26) and (2.27), (2.27) and
(2.28).

The main results are the following.

Theorem (2.29). If 1 ≤ p ≤ ∞, α > −1 and δ > 0, then (1.1) holds with C
independent of f if and only if (a, b, A,B, α, δ) satisfy the Np conditions.

Theorem (2.30). If 1 < p ≤ ∞, α > −1, δ > 0 and (a, b, A,B, α, δ) satisfy the
Sp conditions, then (1.2) holds with C independent of f.

As a substitute for Theorem (2.30) when p = 1 we have the following.

Theorem (2.31). If α > −1, δ > 0, (a, b, A,B, α, δ) satisfy the S1 conditions
and Eµ is the set where xa(1 + x)b−a supn≥0(|σ(α,δ)

n (f, x)|) > µ, then |Eµ| ≤
(C/µ)‖f(x)xA(1 + x)B−A‖1 holds with C independent of f and µ.

Because of (2.3) and (2.5), Theorem (2.30) is an immediate consequence of the
following result.

Theorem (2.32). If 1 < p ≤ ∞, α > −1 and δ > 0, then∥∥∥∥ sup
ν≥2+2α

∫ ∞
0

τ |f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p(2.33)

(with C independent of f) if and only if (a, b, A,B, α, δ) satisfy the Sp conditions.

The following is an immediate consequence of Theorems (2.30) and (2.31) since
with the hypotheses of Theorem (2.34) parameters a and b can be chosen to satisfy
the Sp conditions, and Lebesgue measure is absolutely continuous with respect to
xa(1 + x)b−adx for any a and b.

Theorem (2.34). If 1 ≤ p <∞, α > −1, δ > 0, (2.12), (2.13), (2.23) and (2.24)
are satisfied with equality in at most one of (2.23) and (2.24) and∥∥f(x)xA(1 + x)B

∥∥
p
<∞,

then lim
n→∞

σ(α,δ)
n (f, x) = f(x) for almost every x > 0.



CESÀRO MEANS OF LAGUERRE EXPANSIONS 1127

Sufficiency in Theorem (2.29) will be obtained by proving (2.6); this is enough
because of (2.3) and (2.5). To avoid technical problems, the sufficiency parts of
Theorem (2.29) and (2.32) will be proved with the sup’s taken over ν ≥ 4. This
can be done because for 2 + 2α ≤ ν ≤ 4 the inequality

τ(α, δ, ν, x, y, a, b, A,B) ≤ C τ(α, δ, 4, x, y, a, b, A,B)(2.35)

holds with C independent of x and y. The proof will be done by majorizing τ by a
sum of parts and proving the sufficiency for each part. The parts will be denoted
as τj for 1 ≤ j ≤ 12. Each part will be taken equal to τ if certain conditions are
met, and 0 otherwise. The conditions for each part are given below. It is easy to
verify that for a given ν ≥ 4 every pair (x, y) of positive real numbers satisfies at
least one of the conditions.

Part Number Conditions

1 0 ≤x ≤ 2/ν 0 ≤y ≤ 2/ν

2 2/ν ≤x ≤ 1 0 ≤y ≤ x/2
3 1 ≤x ≤ ν/2 0 ≤y ≤ x/2
4 3ν/2 ≤x 0 ≤y ≤ x/2
5 2/ν ≤y ≤ 1 0 ≤x ≤ y/2
6 1 ≤y ≤ ν/2 0 ≤x ≤ y/2
7 3ν/2 ≤y 0 ≤x ≤ y/2
8 ν/2 ≤x ≤ 3ν/2 0 ≤y ≤ x/2
9 ν/2 ≤y ≤ 3ν/2 0 ≤x ≤ y/2

10 x/2 ≤y ≤ 2x 3/ν ≤x+ y ≤ ν
11 x/2 ≤y ≤ 2x ν ≤x+ y ≤ 3ν

12 x/2 ≤y ≤ 2x 3ν ≤x+ y

Sufficiency in Theorem (2.29) will be proved by showing with its hypotheses that

sup
ν≥4

∥∥∥∥∫ ∞
0

τj |f(y)|dy
∥∥∥∥
p

≤ C ‖f(x)‖p(2.36)

holds for 1 ≤ j ≤ 12. This is done in §§4-6. For Theorem (2.31) and the sufficiency
portion of Theorem (2.32) we also show in §§4-6 if 1 ≤ p ≤ ∞ that∥∥∥∥sup

ν≥4

∫ ∞
0

τj |f(y)|dy
∥∥∥∥
p

≤ C ‖f(x)‖p(2.37)

for 1 ≤ j ≤ 9 and that ∫ ∞
0

τj |f(y)|dy ≤ CMf(x),(2.38)

for 10 ≤ j ≤ 12, where Mf(x) denotes the Hardy-Littlewood maximal function of
f at x and C is independent of ν, x and f . These and standard facts about the
maximal function, Theorem 1, page 5 of [8], then complete the proof of Theorem
(2.31) and the sufficiency in Theorem (2.32). Proofs of the necessity results in
Theorems (2.29) and (2.32) are given in §§7-9. The additional fact that (2.26) is
a necessary condition for (1.2), Theorem (9.3), is also proved in §9. Finally, in
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§10 we show that (2.28) is not a necessary condition for (1.2) and prove (1.2) with
hypotheses that do not include (2.28).

The theorems in §1 are straightforward specializations of the theorems of this
section and Theorem (9.3) but a few comments may help the reader through the
details. In Theorem (1.3), for example, the condition r ≤ 7/12+δ−1/(3p) resulting
from (2.19) would seem to be needed as an additional hypothesis. It is not needed
because the conditions (1.12) and (1.6) imply it. Similarly, (1.9) and (1.5) imply
r ≥ −1/4− δ − 1/(3p) which comes from (2.23). The fact that strict inequality is
needed in (1.8) follows from the fact that (2.9) and (2.15) can not both be equalities.
Similarly the need for strict inequality in (1.11) follows from the fact that (2.12) and
(2.16) can not both be equalities. The inequality (1.9) and the requirement of strict
inequality if δ = 2/(3p)− 1/2 follow from (2.14) and the condition that (2.14) and
(2.23) can not both be equalities. Similarly, (2.17) and the pair condition between it
and (2.19) produce (1.12). Considerations of the same sort prove Theorems (1.13)
and (1.19).

3. Basic lemmas

Of the 38 parts that will be estimated to prove the sufficiency portion of The-
orems (2.29) and (2.32), a majority can be reduced to an interpolation argument
based on six lemmas. For convenient reference, these lemmas are stated together
here with the proofs given after the last one. It may be of interest to note that in
the last four the conditions given are necessary and sufficient. This is also the case
for lemmas (3.1) and (3.2) except for the fact that they are also true with suitable
conditions for s = 0. Since in the applications of those lemmas s = −δ/2, which
is always strictly negative, there was no reason to add the complication of the case
s = 0. Note that even for these simple lemmas the peculiar conditions appear that
in certain pairs of inequalities at least one must be strict.

Lemma (3.1). If s < 0, r + s < −1 and r + s+ t ≤ −1, then for p = 1∥∥∥∥xrχ[1,∞)(x) sup
ν≥x

νs
∫ x

1

yt|f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p

with C independent of f . If s < 0, r+s ≤ 0 and r+s+t ≤ −1, with equality holding
in at most one of the last two inequalities, this holds for p = ∞. In addition, if
s < 0, r + s = −1 and r + s+ t ≤ −1, then

sup
ν≥1

νs
∥∥∥∥xrχ[1,ν](x)

∫ x

1

yt|f(y)|dy
∥∥∥∥

1

≤ C‖f(x)‖1

with C independent of f.

Lemma (3.2). If s < 0, s + t ≤ 0 and r + s+ t ≤ −1 with equality holding in at
most one of the last two inequalities, then for p = 1∥∥∥∥xrχ[1,∞)(x) sup

ν≥x
νs
∫ ν

x

yt|f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p

with C independent of f . If s < 0, s + t ≤ −1 and r + s + t ≤ −1, this holds for
p =∞.
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Lemma (3.3). If t ≤ 0, s+ t ≤ 0 and r+ s+ t ≤ −1 with strict inequalilty holding
in the first two in case the third is an equality, then for p = 1∥∥∥∥xrχ[1,∞)(x) sup

ν≥x
νs
∫ ∞
ν

yt|f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p

with C independent of f . If t < −1, s+ t ≤ −1 and r+ s+ t ≤ −1, then this holds
for p =∞. In addition, if t = 0, s+ t < 0 and r + s+ t = −1, then

sup
ν≥1

νs
∥∥∥∥xrχ[1,ν](x)

∫ ∞
ν

yt|f(y)|dy
∥∥∥∥

1

≤ C‖f(x)‖1.

Lemma (3.4). If r < −1, r + s < −1 and r + s+ t ≤ −1, then for p = 1∥∥∥∥xrχ[1,∞)(x) sup
1≤ν≤x

νs
∫ ν

1

yt|f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p

with C independent of f . If r ≤ 0, r + s ≤ 0 and r + s + t ≤ −1 with equality in
at most one of the last two inequalities, then this holds for p = ∞. In addition, if
r < −1, r + s = −1 and r + s+ t ≤ −1, then

sup
ν≥1

νs
∥∥∥∥xrχ[ν,∞)(x)

∫ ν

1

yt|f(y)|dy
∥∥∥∥

1

≤ C‖f(x)‖1

with C independent of f.

Lemma (3.5). If r < −1, r + t ≤ −1 and r + s+ t ≤ −1, then for p = 1∥∥∥∥xrχ[1,∞)(x) sup
1≤ν≤x

νs
∫ x

ν

yt|f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p

with C independent of f. If r ≤ 0, r + t ≤ −1 and r + s + t ≤ −1 with equality
holding in at most one of the first two inequalities, then this holds for p =∞.

Lemma (3.6). If t ≤ 0, r + t ≤ −1 and r + s + t ≤ −1, with strict inequality in
the last two in case of equality in the first, then for p = 1∥∥∥∥xrχ[1,∞)(x) sup

1≤ν≤x
νs
∫ ∞
x

yt|f(y)|dy
∥∥∥∥
p

≤ C‖f(x)‖p

with C independent of f. If t < −1, r + t ≤ −1 and r + s+ t ≤ −1, then this holds
for p =∞. In addition, if t = 0, r + t < −1 and r + s+ t = −1, then

sup
ν≥1

νs
∥∥∥∥xrχ[ν,∞](x)

∫ ∞
x

yt|f(y)|dy
∥∥∥∥

1

≤ C‖f(x)‖1

with C independent of f.

The proofs of the assertions in these lemmas for p =∞ are all done by replacing
|f(y)| on the left by ‖f(y)‖∞ and factoring it out. The proofs are then completed
by considering separately the cases t = −1 and t 6= −1 in the simple evaluations;
this is left to the reader.

The first part of Lemma (3.1) for p = 1 is proved by replacing νs by xs and
reversing the order of integration. For the second part, replace yt by 1 + νt and the
upper limit on the inner integral by ∞. The proof is completed by performing the
x integration; note that the conditions imply r > −1.
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To prove Lemma (3.2) for p = 1, replace νs by ys inside the inner integral to get
the bound

C

∫ ∞
1

xr
∫ ∞
x

ys+t|f(y)|dydx.

If r + s + t = −1, then since by hypothesis s + t < 0 it follows that r > −1.
Interchanging the order of integration leads immediately to the result. If r + s +
t < −1, replace ys+t by xs+t in the inner integral and interchange the order of
integration to get the result.

For the first part of Lemma (3.3) with p = 1, if r+s+t < −1, replace yt by νt, the
resulting νs+t by xs+t and the lower limit ν on the inner integral by 1. Performing
the x integration then completes this case. If r + s + t = −1, then replace νs by
xs if s ≤ 0 and by ys in the inner integral if s > 0. Next replace the lower limit in
the inner integral by x. The conditions imply that the resulting exponents of x, r
or r + s are greater than −1, and interchanging the order of integration completes
the proof. For the second part the hypotheses imply r > −1, and performing the
outer integration leads immediately to the result since r + s+ 1 = −t = 0.

The first part of Lemma (3.4) with p = 1 is proved by replacing νs by xs if s ≥ 0
and by ys in the inner integral if s < 0. Next change the upper limit of the inner
integral to x and interchange the order of integration to complete the proof. For
the second part evaluate the outer integral and note that the resulting exponent of
ν is 0 and that t ≤ 0 to complete this part.

Lemma (3.5) for p = 1 follows by replacing νs by 1 + ys in the inner integral,
changing the lower limit of integration from ν to 1 and reversing the order of
integration.

For the first part of Lemma (3.6) with p = 1 first replace νs by xmax(0,s) and drop
the sup. If r + max(s, 0) = −1, then by hypothesis t < 0 and r + t + max(s, 0) <
−1. Replacing yt by xt, changing the lower limit of the inner integral to 1 and
performing the outer integration will complete the proof. If r + max(s, 0) 6= −1,
then interchange the order of integration to get the result. For the second part
change the lower limit of the inner integral to 1 and perform the outer integration
to prove the result.

4. Parts reducible to the basic lemmas

This section contains the proofs of the inequality (2.36) with the Np conditions
for 1 ≤ j ≤ 7 and of (2.37) with the Sp conditions for 1 ≤ j ≤ 8. This will be
done by using interpolation between p = 1 and p = ∞. For this the Np and Sp
conditions are not suitable. We will make use of the following weaker conditions.

Parameters (a, b, A,B, α, δ) will be said to satisfy the np conditions provided
they satisfy the conditions (2.9)–(2.13), (2.15)–(2.16), (2.18), (2.21), (2.24) and in
at least one of each of the following pairs the inequality is strict: (2.9) and (2.11)
except for p = 1, (2.9) and (2.15), (2.11) and (2.12) except for p = ∞, (2.12) and
(2.16), (2.15) and (2.24) except for p =∞, (2.16) and (2.18) except for p = 1.

Parameters (a, b, A,B, α, δ) will be said to satisfy the sp conditions provided
they satisfy the conditions (2.10)–(2.13), (2.15), (2.21), (2.24), (2.25)–(2.28) and in
at least one of each of the following pairs the inequality is strict: (2.11) and (2.12)
except for p =∞, (2.11) and (2.13), (2.11) and (2.25), (2.13) and (2.26), (2.15) and
(2.24) except for p =∞, (2.15) and (2.25), (2.26) and (2.27), (2.27) and (2.28).

In this section we will prove the following.
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Lemma (4.1). If α > −1, δ > 0, 1 ≤ j ≤ 7 and (a, b, A,B, α, δ) satisfy the n1

conditions, then (2.36) holds for p = 1 with C independent of f .

Lemma (4.2). If α > −1, δ > 0, 1 ≤ j ≤ 8 and (a, b, A,B, α, δ) satisfy the s1

conditions, then (2.37) holds for p = 1 with C independent of f .

Lemma (4.3). If α > −1, δ > 0, 1 ≤ j ≤ 7 and (a, b, A,B, α, δ) satisfy the n∞
conditions, then (2.37) holds for p = ∞ with C independent of f . This also holds
for j = 8 if the s∞ conditions are satisfied.

Corollary (4.4). If 1 ≤ p ≤ ∞, α > −1, δ > 0, (a, b, A,B, α, δ) satisfy the Np
conditions and 1 ≤ j ≤ 7, then (2.36) holds with C independent of f .

Corollary (4.5). If 1 ≤ p ≤ ∞, α > −1, δ > 0, (a, b, A,B, α, δ) satisfy the Sp
conditions and 1 ≤ j ≤ 8, then (2.37) holds with C independent of f .

Corollary (4.4) follows by first observing that if 1 < p <∞ and (a, b, A, B, α, δ)
satisfy the Np conditions, then (a−1+1/p, b−1+1/p,A−1+1/p,B−1+1/p, α, δ)
satisfy the n1 conditions. Therefore, by Lemma (4.1) we have∫ ∞

0

xa+1/p(1 + x)b−a
∫ ∞

0

κj |f(y)|dy dx
x
≤ C

∫ ∞
0

xA+1/p(1 + x)B−A|f(x)|dx
x
,

where κj = G
(α,δ)
n (x, y), the unweighted kernel estimated defined in (2.4), on the

set where τj > 0 and 0 elsewhere. Similarly, (a+1/p, b+1/p,A+1/p,B+1/p, α, δ)
satisfy the n∞ conditions. Therefore, we also have∥∥∥∥xa+1/p(1 + x)b−a

∫ ∞
0

κj|f(y)|dy
∥∥∥∥
∞
≤ C

∥∥∥xA+1/p(1 + x)B−Af(x)
∥∥∥
∞
.

Since κj is independent of a, b, A and B the Marcinkiewicz interpolation theorem,
Theorem 2.4, page 184 of [9], can be applied to get∫ ∞

0

(
xa+1/p(1 + x)b−a

∫ ∞
0

κj |f(y)|dy
)p

dx

x

≤ C
∫ ∞

0

(
xA+1/p(1 + x)B−A|f(x)|

)p dx
x
,

for 1 < p < ∞. This completes the proof of Corollary (4.4). Corollary (4.5) is
proved in the same way from Lemmas (4.2) and (4.3) using the fact that if the s∞
conditions are satisfied, then the n∞ conditions are also satisfied.

Lemmas (4.1)–(4.3) will now be proved by considering each j separately. For
1 ≤ j ≤ 7 we will first show that (2.37) holds for p = 1 if the s1 conditions are
satisfied and for p =∞ if the n∞ conditions are satisfied. This will, also imply (2.36)
under the same conditions. For parts where the n1 conditions are less restrictive,
the inequality (2.36) will then be proved for the additional cases allowed by the n1

conditions. For j = 8 only (2.37) will be proved using the s1 and s∞ conditions.
For j = 1, use of (2.8) shows that the left side of (2.37) is bounded by

C

∥∥∥∥∥xa+α/2χ[0,1/2](x) sup
4≤ν≤2/x

να+1

∫ 2/ν

0

y−A+α/2|f(y)|dy
∥∥∥∥∥
p

.

To estimate this, make the change of variables x = 2/u and y = 2/v to obtain

C

∥∥∥∥u−a−α2− 2
pχ[4,∞)(u) sup

4≤ν≤u
να+1

∫ ∞
ν

vA−
α
2 + 2

p−2g(v)dv
∥∥∥∥
p,u

,
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where ‖ ‖p,u denotes the Lp norm in u, and

g(v) = v−2/p|f(v−1)|.

The function g(v) has the same Lp norm as f . This notation will be used throughout
this section. The inner integral should now be split at u. Lemma (3.5) can then
be applied to the first part and Lemma (3.6) to the second part. The required
conditions reduce to (2.10), (2.11), (2.13) and A − a ≤ 1 + α which is implied by
(2.11) and is always strict because of the assumption that α > −1. The only pair
condition needed is that (2.11) and (2.13) can not both be equalities if p = 1. This
completes the proof of Lemmas (4.2) and (4.3) for j = 1. For Lemma (4.1) with
j = 1 the same procedure and lemmas can be used; the pair condition on (2.11)
and (2.13) is not needed.

For j = 2 the left side of (2.37) is bounded by

C

∥∥∥∥∥xa− 3
4−

δ
2χ[0,1](x) sup

ν≥2/x

ν−
δ
2

∫ x/2

0

y−A+α
2
(
ν−1 + y

)− 1
4−

α
2 |f(y)|dy

∥∥∥∥∥
p

.

The change of variables x = 2/u, y = 2/v gives the bound

C

∥∥∥∥u−a+ 3
4 + δ

2−
2
pχ[2,∞)(u) sup

ν≥u
ν−

δ
2

∫ ∞
2u

vA−
α
2 + 2

p−2
(
ν−1 + v−1

)− 1
4−

α
2 g(v)dv

∥∥∥∥
p,u

.

Now replace the lower limit in the inner integral by u and split that integral at ν.
This gives as an estimate the sum of

C

∥∥∥∥u−a+ 3
4 + δ

2−
2
pχ[2,∞)(u) sup

ν≥u
ν−

δ
2

∫ ν

u

vA+ 2
p−

7
4 g(v)dv

∥∥∥∥
p,u

and

C

∥∥∥∥u−a+ 3
4 + δ

2−
2
pχ[2,∞)(u) sup

ν≥u
ν

1
4 +α

2−
δ
2

∫ ∞
ν

vA−
α
2 + 2

p−2g(v)dv
∥∥∥∥
p,u

.

Lemma (3.2) can be used on the first and Lemma (3.3) on the second. The required
conditions for p = 1 are δ > 0 which is an hypothesis, (2.11), (2.12) and (2.13),
and that one of (2.11) and (2.12) and one of (2.11) and (2.13) must be strict. For
p = ∞ the same inequalities are needed but the pair restrictions are not. This
completes the proof of Lemmas (4.2) and (4.3) for j = 2. Lemma (4.1) for j = 2
follows in the same way; the requirement that one of (2.11) and (2.13) be strict is
not needed.

For j = 3 the left side of (2.37) is bounded by

C

∥∥∥∥∥xb− 3
4−

δ
2χ[1,∞)(x) sup

ν≥2x
ν−

δ
2

∫ x/2

0

y
α
2−A(ν−1 + y)−

1
4−

α
2 (1 + y)A−B|f(y)|dy

∥∥∥∥∥
p

.

To estimate this, change the upper limit in the inner integral to x and split that
integral at 1. In the part from 0 to 1 make the change of variables y = 1/v. This
shows that the left side of (2.37) is bounded by the sum of

C

∥∥∥∥xb− 3
4−

δ
2χ[1,∞](x) sup

ν≥2x
ν−

δ
2

∫ ∞
1

vA−
α
2−2+ 2

p (ν−1 + v−1)−
1
4−

α
2 g(v)dv

∥∥∥∥
p

(4.6)
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and

C

∥∥∥∥xb− 3
4−

δ
2χ[1,∞](x) sup

ν≥2x
ν−

δ
2

∫ x

1

y−B−
1
4 |f(y)|dy

∥∥∥∥
p

.(4.7)

Splitting the inner integral in (4.6) at ν shows that (4.6) is bounded by the sum of

C

∥∥∥∥xb− 3
4−

δ
2χ[1,∞](x) sup

ν≥2x
ν−

δ
2

∫ ν

1

vA−
7
4 + 2

p g(v)dv
∥∥∥∥
p

(4.8)

and

C

∥∥∥∥xb− 3
4−

δ
2χ[1,∞](x) sup

ν≥2x
ν
α
2 + 1

4−
δ
2

∫ ∞
ν

vA−
α
2−2+ 2

p g(v)dv
∥∥∥∥
p

.(4.9)

Lemma (3.1) is used for (4.7). For p = 1 we need δ > 0, b < δ − 1/4 and
b − B ≤ δ; the last two follow from (2.27) and (2.21). For p = ∞ the inequalities
δ > 0, b ≤ δ + 3/4 and b−B < δ are sufficient, and the last two follow from (2.19)
and (2.27). For (4.8) the inner integral will be split at x. For the first part Lemma
(3.1) is used and requires for p = 1 the first two conditions in the last part and
A+ b ≤ δ− 1/2 which is implied by (2.26). For p =∞ it requires δ > 0, (2.18) and
(2.16) with equality in at most one of the last two as hypothesized. For the second
part of (4.8) with p = 1 Lemma (3.2) requires δ > 0, (2.12) and A+b ≤ δ−1/2 with
equality in at most one of the last two. Since (2.26) implies that the last condition
holds strictly, these conditions are satisfied. For p = ∞ we need δ > 0, (2.12)
and (2.16). Finally, Lemma (3.3) estimates (4.9). The requirements for p = 1 are
(2.13), (2.12) and A + b ≤ δ − 1/2 with the last strict if either of the others is an
equality. Since the hypothesized (2.26) implies the last is strict, this completes this
part for p = 1. For p = ∞ we need (2.13), (2.12) and (2.16) which are in the n∞
conditions. This completes the proof of Lemmas (4.2) and (4.3) for j = 3.

The proof of Lemma (4.1) for j = 3 uses the same breakup and the same lemmas.
For this version of (4.7) the requirements are δ > 0, (2.18) and b − B ≤ δ. Since
(2.21) has been assumed, the inequality b−B < δ holds. For the first part of (4.8)
the requirements are δ > 0, (2.16) and (2.18). For the second part of (4.8) the
requirements are δ > 0, (2.12) and (2.16) with equality in at most one of the last
two as assumed in n1. For (4.9) the requirements are (2.13), (2.12) and (2.16) with
equality in at most one of the last two. These are also included in the n1 conditions;
this completes the proof of Lemma (4.1) for j = 3.

The left side of (2.37) for j = 4 has the bound

C

∥∥∥∥∥xb− 1
2 e−ξxχ[6,∞)(x) sup

4≤ν≤2x/3

ν−δ−
1
12

∫ x/2

0

y
α
2−A(1 + y)A−B|f(y)|dy

(ν−1 + y)
1
4 +α

2

∥∥∥∥∥
p

.

The term e−ξx can be replaced by Cx−q with q arbitrarily large. The same split in
the inner integral and change of variables in the first part as done for the case j = 3
can be done here. Lemmas (3.4), (3.5) and (3.6) can then be applied. Since the
exponent of x can be taken arbitrarily small, all the requirements of these lemmas
except for the first inequality in Lemma (3.6) are automatically satisfied, and that
requirement is just (2.13). It is simpler, however, to just apply Hölder’s inequality
to the inner integral to get the estimate.
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For j = 5 the left side of (2.37) has the bound

C

∥∥∥∥∥xa+α
2 χ[0,1/2](x) sup

ν≥4
(ν−1 + x)−

1
4−

α
2 ν−

δ
2

∫ 1

max(2/ν,2x)

y−A−
3
4−

δ
2 |f(y)|dy

∥∥∥∥∥
p

.

To estimate this, bound the sup by the sum of the sup’s over 4 ≤ ν ≤ 1/x and
ν ≥ 1/x. Next make the changes of variables x = 1/u and y = 1/v. This will give
the sum of

C

∥∥∥∥∥u−a−α2− 2
pχ[2,∞)(u) sup

2≤ν≤u
ν

1
4 +α

2−
δ
2

∫ ν/2

1

vA−
5
4 + δ

2 + 2
p g(v)dv

∥∥∥∥∥
p,u

(4.10)

and

C

∥∥∥∥∥u 1
4−

2
p−aχ[2,∞)(u) sup

ν≥u
ν−

δ
2

∫ u/2

1

vA−
5
4 + δ

2 + 2
p g(v)dv

∥∥∥∥∥
p,u

(4.11)

as an upper bound. For (4.10) with p = 1 Lemma (3.4) requires (2.10), (2.25) and
(2.11) for boundedness. For p = ∞ Lemma (3.4) requires (2.10), (2.9) and (2.11)
and it also requires that one of (2.9) and (2.11) is strict. For (4.11) with p = 1
Lemma (3.1) requires δ > 0, (2.25) and (2.11). For p = ∞ it requires δ > 0, (2.9)
and (2.11) and that one of the last two is strict. The estimation for the left side
of (2.36) for p = 1 and j = 5 is similar. The outer integral is split at 1/ν, and the
same change of variables leads to versions of (4.10) and (4.11) with supν≥4 outside
the outer integral and the outer integrations respectively from ν to ∞ and from 1
to ν. As before, Lemmas (3.4) and (3.1) are used. The requirements are δ > 0,
(2.10), (2.9) and (2.11). This completes part 5.

For j = 6 the bound on the left side of (2.37) is∥∥∥∥∥ sup
ν≥max(4,4x)

xa+α
2 (1 + x)b−a

ν
δ
2 (ν−1 + x)

1
4 +α

2
χ[0,∞](x)

∫ ν/2

max(2x,1)

y−B−
3
4−

δ
2 |f(y)|dy

∥∥∥∥∥
p

.

Split the outer norm at 1. In the first part make the change of variables x = 1/u
and split the sup into sup’s over 4 ≤ ν ≤ u and ν ≥ u. This gives an upper bound
of the sum of

C

∥∥∥∥u−a−α2− 2
pχ[4,∞)(u) sup

4≤ν≤u
ν

1
4 +α

2−
δ
2

∫ ν

1

y−B−
3
4−

δ
2 |f(y)|dy

∥∥∥∥
p,u

,(4.12)

C

∥∥∥∥u 1
4−a−

2
pχ[1,∞)(u) sup

ν≥u
ν−

δ
2

∫ ν

1

y−B−
3
4−

δ
2 |f(y)|dy

∥∥∥∥
p,u

(4.13)

and

C

∥∥∥∥xb− 1
4χ[1,∞)(x) sup

ν≥x
ν−

δ
2

∫ ν

x

y−B−
3
4−

δ
2 |f(y)|dy

∥∥∥∥
p

.(4.14)

For (4.12) with p = 1 Lemma (3.4) gives the bound with the assumption of (2.10),
(2.25) and (2.15); with p =∞ inequalities (2.10), (2.9) and (2.15) are needed plus
the requirement that (2.9) and (2.15) are not both equalities. For (4.13) the inner
integral should be split at u. Then Lemma (3.1) can be used on the first part and
Lemma (3.2) on the second part. The requirements are δ > 0, (2.25), (2.15) and
(2.24) with equality in at most one of the last two for the case p = 1. For p =∞ the
requirements are δ > 0, (2.9), (2.15) and (2.24) with equality in at most one of (2.9)
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and (2.15). Lemma (3.2) estimates (4.14); for p = 1 and p = ∞ the requirements
are δ > 0, (2.24) and b − B ≤ δ with equality in at most one of the last two for
p = 1. The last inequality and the equality condition follow from (2.21). The same
approach proves Lemma (4.1) for j = 6. The inequalities used are δ > 0, (2.9),
(2.10), (2.15), (2.21) and (2.24) along with the requirement that equality can not
occur in both (2.15) and (2.24).

For j = 7 the left side of (2.36) has the bound

C

∥∥∥∥∥sup
ν≥4

ν−δ−
1
12xa+α

2 (1 + x)b−a

(ν−1 + x)
1
4 +α

2
χ[0,∞)(x)

∫ ∞
max(2x,3ν/2)

y−B−
1
2 e−ξy|f(y)|dy

∥∥∥∥∥
p

.

The term e−ξy can be replaced by Cy−q with q arbitrarily large. The same approach
as used for j = 6 can be used, and Lemmas (3.3), (3.5) and (3.6) will give the result
with the only requirement being (2.10). As in the case j = 4, however, it is easier
to just use Hölder’s inequality on the inner integral.

The left side of (2.37) with j = 8 is bounded by

C

∥∥∥∥∥χ[2,∞)(x) sup
2x/3≤ν≤2x

xb−
1
4 ν−δ−

1
4

(ν
1
3 + |x− ν|) 1

4

∫ x/2

0

y
α
2−A(1 + y)A−B

(ν−1 + y)
1
4 +α

2
|f(y)|dy

∥∥∥∥∥
p

.

Now replace (ν
1
3 + |x − ν|) 1

4 by ν
1
12 and make the change of variables u = 2x/3.

This gives an upper bound of

C

∥∥∥∥χ[1,∞)(u) sup
ν≥u

ub−
1
4 ν−

1
3−δ

∫ u

0

y
α
2−A

(
ν−1 + y

)− 1
4−

α
2 (1 + y)A−B|f(y)|dy

∥∥∥∥
p,u

.

The rest of the estimation is done in the way that the case j = 3 was done. For
p = 1 the requirements are δ > −1/3, (2.13), (2.26)–(2.28),

A ≤ δ +
1
12
,(4.15)

(2.26) and (4.15) are not both equalities and (2.13) and (2.26) are not both equal-
ities. Since (2.12) has been assumed and implies that (4.15) holds strictly, this
completes Lemma (4.2) for j = 8. For p = ∞ the requirements are δ > −1/3,
(2.13), (2.26)–(2.28), A ≤ δ + 13/12 which is implied by (2.12), one of (2.26) and
(2.27) must be strict and one of (2.27) and (2.28) must be strict. Since these
conditions are contained in the s∞ conditions, this proves Lemma (4.3) for j = 8.

5. Parts with one variable near ν

This section contains the proof of the following lemma. A different approach is
needed because the estimates contain powers of |x − ν| or |y − ν|. Note that since
the Sp conditions imply the Np conditions, Lemma (5.1) also shows that the Sp
conditions imply (2.37) for j = 9. Similarly, since (2.37) implies (2.36), this lemma
also shows that the Np conditions imply (2.36).

Lemma (5.1). If 1 ≤ p ≤ ∞, α > −1, δ > 0 and (a, b, A,B, α, δ) satisfy the Np
conditions then (2.36) holds for j = 8 and (2.37) holds for j = 9.
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To prove (2.36) for j = 8 we start with the fact that the left side has the bound

C sup
ν≥4

∥∥∥∥∥xb−
1
4 ν−δ−

1
4χ[ν/2,3ν/2](x)

(ν1/3 + |x− ν|)1/4

∫ x/2

0

y
α
2−A(1 + y)A−B|f(y)|

(ν−1 + y)
1
4 +α

2
dy

∥∥∥∥∥
p

.(5.2)

Now replace xb−
1
4 by ν to the same power and replace the upper limit of the inner

integral by ν. Then evaluate the x integration and apply Hölder’s inequality to the
inner integral. Routine computation making use of (2.13) shows that if neither A
nor B equals 3/4− 1/p and p 6= 4, then (5.2) has a bound of ‖f‖p times

C sup
ν≥4

νb−
1
2−δ

(
ν

1
p−

1
4 + ν

1
3p−

1
12

)(
1 + νA−

3
4 + 1

p + ν−B+ 3
4−

1
p

)
.(5.3)

If A equals 3/4− 1/p, the term νA−
3
4 + 1

p is replaced by (log ν)
1
p′ . If B equals 3/4−

1/p, the term ν−B+ 3
4−

1
p is replaced by (log ν)

1
p′ . If p = 4, the term (ν

1
p−

1
4 +ν

1
3p−

1
12 )

is replaced by (log ν)
1
4 . If the terms in (5.3) are multiplied out, it follows from

(2.16)–(2.19), (2.21) and (2.22) that all the resulting powers of ν are nonpositive.
This completes the proof except for the special cases when there are log terms. If
A = 3/4− 1/p and p > 1, we need to show in addition that inequalities (2.18) and
(2.19) are strict. The first follows from the fact that for this value of A inequalities
(2.16) and (2.18) are the same. By hypothesis equality can not occur in both
if p > 1; therefore, both must be strict. The second follows from the fact that
(2.17) and (2.19) are the same and equality can not occur in both. Similarly, if
B = 3/4− 1/p, we must also have strict inequality in (2.18) and (2.19). The first
follows from (2.21) and the fact that δ > 0. For this value of B inequalities (2.19)
and (2.22) are the same, and it follows from the hypothesis that these can not both
be equalities that (2.19) is strict. Finally if p = 4 we need to show that (2.16) and
(2.18) are strict and b − B < δ. For p = 4 inequalities (2.16) and (2.17) are the
same so both are strict. Similarly, (2.18) and (2.19) are the same and, therefore,
strict. The inequality b − B < δ as mentioned before holds for all B because of
(2.21). This completes the proof of (2.36) for j = 8.

For j = 9 the left side of (2.37) has the bound

C

∥∥∥∥∥sup
ν≥4

χ[0,3ν/4](x)
xa+ α

2 (1 + x)b−a

(ν−1 + x)
α
2 + 1

4

∫ 3ν/2

ν/2

y−B−
1
2−δ

(ν1/3 + |y − ν|)1/4
|f(y)|dy

∥∥∥∥∥
p

.

Applying Hölder’s inequality to the inner integral shows this has the bound

C

∥∥∥∥sup
ν≥4

χ[0,ν](x)
xa+α

2 (1 + x)b−a

(ν−1 + x)
α
2 + 1

4
H(ν)‖χ[ν/2,3ν/2]f(y)‖p,y

∥∥∥∥
p,x

,(5.4)

where ‖ ‖p,x and ‖ ‖p,y denote the unweighted Lp norms with respect to x and y
respectively and

H(ν) =


ν−

1
4−δ−B−

1
3p 1 ≤p < 4/3,

ν−
1
2−δ−B(log ν)

1
4 p = 4/3,

ν
1
4−δ−B−

1
p 4/3 <p ≤ ∞.

To estimate (5.4) move the terms between the sup and the inner norm inside the
inner norm. Then H(ν) can be replaced by H(y), (ν−1 +x) by (y−1 +x) and χ[0,ν]
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by χ[0,2y]. This produces the bound∥∥∥∥∥sup
ν≥4

∥∥∥∥xa+α
2 (1 + x)b−a

(y−1 + x)
1
4 +α

2
χ[0,2y](x)χ[ν/2,3ν/2](y)H(y)f(y)

∥∥∥∥
p,y

∥∥∥∥∥
p,x

.

Next replace χ[ν/2,3ν/2](y) with χ[2,∞)(y), and reverse the order of integration to
get the bound C‖f(y)L(y)‖p,y, where

L(y) = χ[2,∞)(y)H(y)
∥∥∥∥xa+α

2 (1 + x)b−a

(y−1 + x)
1
4 +α

2
χ[0,2y](x)

∥∥∥∥
p,x

.

The proof is then completed by showing that L(y) is a bounded function of y for
y ≥ 2. Routine computation with special attention paid to the cases a = 1/4−1/p,
b = 1/4 − 1/p and p = 4/3 completes this part. The procedure is like that used
to estimate (5.3) and its variants. The conditions used are (2.14), (2.15), (2.20),
(2.21), (2.23), (2.24) and the fact that equality can not hold in both members of
the following pairs: (2.14) and (2.15), (2.14) and (2.23), (2.15) and (2.24), (2.20)
and (2.23), (2.23) and (2.24).

6. Parts 10-12: x near y

In this section there is the added complication of having terms of the form
|x − y|. This is also the only part in which facts about the Hardy-Littlewood
maximal function are used. We will prove the following two lemmas.

Lemma (6.1). If α > −1, δ > 0, (2.11), (2.21), ν ≥ 4 and j = 10 or 12, then
(2.38) holds with C independent of f , ν and x. This is also true for j = 11 with
the additional assumption (2.28).

Lemma (6.2). If α > −1, δ > 0, 1 ≤ p ≤ ∞, (2.11), (2.21), ν ≥ 4 and j = 10 or
12, then (2.36) holds with C independent of f and ν. This is also true for j = 11
with the additional assumptions (2.20) and (2.22).

To consider the case j = 10 observe first that

τ10 ≤ C
ν1/2xa−A+ δ

2 (1 + x)b−a+A−B

[x+ ν(x − y)2]
1+δ

2

.

Because of (2.11) and (2.21), we have xa−A(1 +x)b−a+A−B ≤ 1. Using this fact we
get ∫ ∞

0

τ10|f(y)|dy ≤ Cν 1
2x

δ
2

∫ min(2x,ν−x)

max(x/2,3/ν−x)

|f(y)|dy
[x+ ν(x− y)2]

1+δ
2

.(6.3)

By Theorem 2, page 62 of [8], the integral is bounded by Cν−
1
2x−

δ
2Mf(x), where

Mf denotes the Hardy-Littlewood maximal function of f . This completes the
proof of Lemma (6.1) for this part. This part of Lemma (6.2) for p > 1 follows
immediately from what we have just proved and the standard norm inequality for
the maximal function, Theorem 1, page 5 of [8]. For p = 1 integrating the expression
on the right side of (6.3) and interchanging the order of integration will complete
the proof.
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For j = 12 note that at least one of x and y must be greater than 3ν/2 and both
are greater than 2. Therefore, since∫ ∞

0

τ12|f(y)|dy ≤ Cν−δxb−B+δ

∫ 2x

x/2

(
e−ξx + e−ξy

)
|f(y)|dy,

the results follow immediately in the same way that they did for the case j = 10.
To prove Lemma (6.1) for j = 11 observe first that τ11 = 0 if x and y are not

both in the interval [ν/3, 2ν]. To prove Lemma (6.1) for this part we start with the
fact that τ11 has the bound

C
(ν1/3 + |x− ν|)−1/4(ν1/3 + |y − ν|)−1/4

(
ν

1
3 + |x− ν|+ |y − ν|

)1+δ

νB−b+
δ
2
[
ν + (x− y)2(ν1/3 + |x− ν|+ |y − ν|)

](1+δ)/2
.(6.4)

To prove (2.38) for j = 11 and |x − ν| ≤ ν1/3, we will show first that for these
values of x

(ν1/3 + |x− y|)3 ≤ C
[
ν + (x− y)2(ν1/3 + |x− ν|+ |y − ν|)

]
.(6.5)

For |x−y| ≤ 2ν1/3 this is trivial. For |x−y| ≥ 2ν1/3 we have |x−y| ≤ |x−ν|+|y−ν|,
and (6.5) follows for this case also since the left side is bounded by C

(
ν + |x− y|3

)
.

Note also that for this case we can replace ν1/3 + |x−ν| with ν1/3 and ν1/3 + |y−ν|
with ν1/3 + |x− y|. Using (6.5) to replace the denominator in (6.4), we see that the
left side of (2.38) is bounded by

C

∫ 2ν

ν/3

νb−B−
δ
2−

1
12

(ν1/3 + |y − x|) 3
4 + δ

2
|f(y)|dy,(6.6)

For δ ≤ 1/6 this is bounded by Cνb−B−δ+1/6Mf(x) which is sufficient by (2.28).
For δ ≥ 1/6 this is bounded by the value at δ = 1/6 since the value decreases as δ
increases. The inequality (2.21) will then complete this part. This completes the
proof of (2.38) for |x− ν| ≤ ν1/3.

For |x− ν| ≥ ν1/3 the integral in (2.38) will be split into three pieces: |x− y| ≤
|x − ν|/2, |x − ν|/2 ≤ |x − y| ≤ 2|x − ν| and |x − y| ≥ 2|x − ν|. In the first part
|y − ν| ≈ |x− ν| and we have the estimate

C

∫
|x−y|≤|x−ν|/2

νb−B−δ/2|x− ν|δ+1/2

[ν + (x− y)2|x− ν|](1+δ)/2
|f(y)|dy.(6.7)

This is bounded by Cνb−B−δ|x−ν|δMf(x). Then since |x−ν| ≤ ν, (2.21) completes
this part. For the second part we replace (ν

1
3 +|y−ν|)−1/4 by ν−1/12, ν1/3+|x−ν|+

|y−ν| by |x−ν| and (x−y)2 by (x−ν)2 to get τ11 ≤ νb−B−δ/2−1/12|x−ν|−3/4−δ/2

and the integral is bounded by the quantity Cνb−B−δ/2−1/12|x − ν|1/4−δ/2Mf(x).
For δ ≤ 1/6 the exponent of |x − ν| is positive and we can replace |x − ν| with ν.
This gives the estimate νb−B−δ+1/6Mf(x) directly for δ ≤ 1/6 and the estimate
νb−BMf(x) for δ > 1/6 using the fact that the expression decreases as δ increases.
Inequalities (2.28) and (2.21) complete this part. For the third part we have |y−ν| ≈
|x− y| and get the estimate

Cνb−B−δ/2|x− ν|−1/4

∫
2|x−ν|≤|x−y|≤ν

|y − x|− 3
4−

δ
2 |f(y)|dy.
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Since |x−ν| ≥ ν1/3, we can replace |x−ν|−1/4 by ν−1/12 and get the same estimate
as in the last part for δ ≤ 1/6. The case δ > 1/6 is also treated as before. This
completes the proof of Lemma (6.1).

To prove Lemma (6.2) for j = 11 note first that τ11 for a value of δ greater than
1/6 is bounded by a constant times its value at δ = 1/6 and that the hypotheses are
the same for all δ ≥ 1/6. We may, therefore, in the proof assume that 0 < δ ≤ 1/6.
The left side of (2.36) is bounded by the sum of∥∥∥∥∥χ[0,ν1/3](|x − ν|)

(∫ 2ν

ν/3

τ11|f(y)|dy
)∥∥∥∥∥

p

(6.8)

and ∥∥∥∥∥χ[−2ν/3,−ν1/3]∪[ν1/3,2ν](x− ν)

(∫ 2ν

ν/3

τ11|f(y)|dy
)∥∥∥∥∥

p

.(6.9)

Using the same estimate for τ11 as was used to obtain (6.6) and applying Hölder’s
inequality to the inner integral, we see that (6.8) is bounded by ‖f(y)‖p times

Cνb−B−
δ
2−

1
12

∥∥∥∥∥χ[0,ν1/3](|x− ν|)
∥∥∥∥χ[ν/3,2ν](y)

(
ν1/3 + |y − x|

)− 3
4−

δ
2

∥∥∥∥
p′,y

∥∥∥∥∥
p,x

.

In the inner norm x can be replaced by ν and the two norms can be evaluated to
give an upper bound of

Cνb−B−
δ
2−

1
12 ν

1
3p

(
ν

1
4−

δ
2−

1
p + ν

1
12−

δ
6−

1
3p

)
(6.10)

if −p′(3 + 2δ)/4 6= −1 and

Cνb−B−
δ
2−

1
12 + 1

3p (log ν)1− 1
p(6.11)

if −p′(3 + 2δ)/4 = −1. The conditions (2.21) and (2.22) complete the estimation of
(6.10). If −p′(3 + 2δ)/4 = −1, then δ = 1

2 −
2
p . Replacing δ in (6.11) by this value

gives an estimate of

Cνb−B−
1
3 + 4

3p (log ν)1− 1
p .

Since p = 4/(1− 2δ) > 4, the inequality (2.21) completes this part.
To estimate (6.9) we split the inner integral as in the proof of Lemma (6.1) into

parts with |y− x| ≤ |x− ν|/2, |x− ν|/2 ≤ |y− x| ≤ 2|x− ν| and 2|x− ν| ≤ |x− y|.
In the first of these the inner integral is bounded by (6.7). As in the proof of
Lemma (6.1), the condition (2.21) implies that (6.7) is bounded by CMf(x) and
completes this part for p > 1. For p = 1 change |x − ν| to |y − ν|. Then estimate
the L1 norm by interchanging the norm and the integral. For parts two and three
of (6.9) we use the same estimates of τ11 as in the proof of Lemma (6.1) except
that in part two (ν

1
3 + |y− ν|)−1/4 should be retained and not replaced by ν−1/12.

Then applying Hölder’s inequality to the inner integral shows that these parts are
bounded respectively by ‖f(y)‖p times

C

∥∥∥∥∥ χ[ν1/3,ν](|x− ν|)
νB−b+

δ
2 |x− ν| 34 + δ

2

∥∥∥χ|x−ν|/2,2|x−ν](|y − x|)(ν
1
3 + |y − ν|)− 1

4

∥∥∥
p′,y

∥∥∥∥∥
p,x

(6.12)



1140 BENJAMIN MUCKENHOUPT AND DAVID W. WEBB

and

C

∥∥∥∥∥χ[ν1/3,ν]

νb−B−
δ
2

|x− ν|1/4
∥∥∥χ[2|x−ν|,ν](|y − x|)|y − x|−

3
4−

δ
2

∥∥∥
p′,y

∥∥∥∥∥
p,x

.(6.13)

The proof can then be completed by showing that (6.12) and (6.13) are bounded
by constants independent of ν.

For (6.12) computing the inner norm gives the estimate

C

∥∥∥∥∥∥χ[ν1/3,ν](|x− ν|)
νb−B−

δ
2

|x− ν| 34 + δ
2

 ν1/4−1/(3p), p < 4/3
(log ν)1/4, p = 4/3
|x− ν|3/4−1/p, p > 4/3

∥∥∥∥∥∥
p

.

Then performing the x integration produces the estimate

Cνb−B



ν−δ−
1
2 + 2

3p 1 <p < 4
3+2δ

ν−
δ
2 + 1

4−
1
3p (log ν)1/p p = 4

3+2δ

ν−
2δ
3 4

3+2δ <p <
4
3

ν−
2δ
3 (log ν)1/4 p = 4

3

ν−
2δ
3 4

3 <p


.

In the first case (2.20) proves the boundedness; for the others apply (2.21).
For (6.13) computing the inner norm gives an estimate of

C

∥∥∥∥∥∥∥χ[ν1/3,ν](|x − ν|)
νb−B−

δ
2

|x− ν|1/4

 |x− ν|
1
4−

δ
2−

1
p p < 4

1−2δ

(log ν)1− 1
p p = 4

1−2δ

ν
1
4−

δ
2−

1
p p > 4

1−2δ


∥∥∥∥∥∥∥
p

.(6.14)

Performing the x integration produces the estimate

Cνb−B

 ν−
2δ
3 p < 4

1−2δ

ν−
2δ
3 (log ν)1− 1

p p = 4
1−2δ

ν−δ+
1
6−

2
3p p > 4

1−2δ

 .

The condition (2.21) shows the first two are bounded, and (2.22) shows it for the
third. This completes the proof of Lemma (6.2).

7. Necessity results

The obvious way to prove that the conditions in §2 are necessary for (1.1) or
(1.2) would be to use an asymptotic estimate for the kernel. This, unfortunately, is
not available except in a very limited way as derived in §8. Standard procedures,
however, will prove that all the conditions in Np except (2.9), (2.12) and the pair
restrictions for these inequalities are necessary for (1.1). This is done in this section.
Inequalities (2.9), (2.12) and their pair restrictions will be proved necessary in §9;
the proofs are based on an inequality proved in §8. This will complete the proof of
the necessity part of Theorem (2.29). The Np conditions are, of course, necessary
for (1.2). In §9 we show in addition that (2.26) is necessary for (1.2) and complete
the necessity part of Theorem (2.32).
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The proofs that (2.11) and (2.21) are necessary are based on the fact that
σ

(α,δ)
n (χ[r,2r], x) converges to χ[r,2r](x) almost everywhere as n → ∞ by Theorem

(2.34). Therefore, by Fatou’s lemma for p <∞ or trivially for p =∞ we have

‖xa(1 + x)b−aχ[r,2r](x)‖p ≤ lim inf
n→∞

‖xa(1 + x)b−aσ(α,δ)
n (χ[r,2r], x)‖p.

Applying (1.1) then produces

‖xa(1 + x)b−aχ[r,2r](x)‖p ≤ C‖xA(1 + x)B−Aχ[r,2r](x)‖p.
By taking r large we see from this that b − B ≤ 0, and by taking r small we get
A− a ≤ 0.

The derivation of the other necessary conditions in this section is essentially
standard as found, for example, in the proof of Theorem 5.1.2, page 113 of [12].
For a bounded f with support a compact subset of (0,∞), the Laguerre coefficients
aj =

∫∞
0
f(x)L(α)

j dx exist and are finite. Then since

σ
(α,δ)
k (f, x) = (1/Aδk)

k∑
j=0

Aδk−jajL
(α)
j (x),

we have

anL(α)
n (x) =

n∑
k=0

A−δ−2
n−k Aδkσ

(α,δ)
k (f, x).

Multiplying this equality by xa(1 + x)b−a, taking the Lp norm of both sides, using
Minkowski’s inequality on the right and (1.1) gives the inequality

|an| ‖xa(1 + x)b−aL(α)
n (x)‖p ≤ C

 n∑
j=0

∣∣A−δ−2
n−k Aδk

∣∣ ‖xA(1 + x)B−Af(x)‖p.

Now use the estimate |Aδk| ≤ C(k + 1)δ to show that the sum is bounded by
C(n+ 1)δ. This and the definition of an then produces∣∣∣∣∫ ∞

0

f(x)L(α)
n (x)dx

∣∣∣∣ ‖xa(1 + x)b−aL(α)
n (x)‖p ≤ C(n+ 1)δ‖xA(1 + x)B−Af(x)‖p.

Next, if p > 1 take

f(x) =
[
x−A(1 + x)A−B

]p′ ∣∣∣L(α)
n (x)

∣∣∣1/(p−1)

sgn[L(α)
n (x)]χ[1/m,m](x)

where m > 0. If p = 1, take f(x) = sgn(L(α)
n (x))χE(m)(x) where E(m) is a subset

of [1/m,m], has positive measure, is contained in an interval of the form [r, 2r] and
such that for x in E(m)

x−A(1 + x)A−B |L(α)
n (x)| ≥ 1

2
sup

[1/m,m]

x−A(1 + x)A−B |L(α)
n (x)|.

Dividing by the norm on the right and letting m→∞ then shows that

‖x−A(1 + x)A−BL(α)
n (x)‖p′‖xa(1 + x)b−aL(α)

n (x)‖p ≤ C(n+ 1)δ.(7.1)

The necessity of (2.10), (2.13)–(2.20), (2.22)–(2.24) and their pair conditions then
follows easily by use of the following lemma on the two norms on the left side of
(7.1).
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Lemma (7.2). If α > −1, ν = 4n+ 2α+ 2 and 1 ≤ p ≤ ∞, then

‖xa(1 + x)b−aL(α)
n (x)‖p ≥ C

(
ν−1/4 + ν−a−1/p + νb−1/2+1/p + νb−1/3+1/(3p)

)
.

In addition,

‖xa(1 + x)b−aL(α)
n (x)‖p ≥ Cν−1/4(log ν)1/p

if a = 1/4− 1/p or b = 1/4− 1/p,

‖xa(1 + x)b−aL(α)
n (x)‖4 ≥ Cνb−1/4(log ν)1/4,

and

‖xa(1 + x)b−aL(α)
n (x)‖p =∞

if a ≤ −α/2− 1/p and p <∞ or if a < −α/2 and p =∞.

To prove Lemma (7.2) we start with the fact, (5.1.7) on page 101 of [11], that
L

(α)
n (0) =

(
n+α
n

)
. By continuity, for each n there is a number h(n) > 0 such that

L
(α)
n (x) ≥ (1/2)

(
n+α
n

)
for 0 ≤ x ≤ h(n). From this we have

L(α)
n (x) ≥ Cνα/2xα/2, 0 < x < h(n).(7.3)

From Theorem 8.22.5, page 199 of [11] we also have

L(α)
n (x) = π−1/2(nx)−1/4 cos[2(nx)1/2 − απ/2− π/4] +O

(
(nx)−3/4

)
(7.4)

uniformly for 1/n ≤ x ≤ 1; and from (1.5.2), page 27 of [12]

L(α)
n (x) =

(2/π)1/2(−1)n

x1/4(ν − x)1/4
cos g +O

(
(νx)−3/4 +

ν1/4

(ν − x)7/4

)
(7.5)

uniformly for 1 ≤ x ≤ ν − ν1/3, where g = [(ν(2θ − sin 2θ) − π]/4 and θ =
cos−1

(
x1/2ν−1/2

)
. (For a derivation of this and the definition of θ not given in

[12] see pages 453-4 of [6].) Lemma (7.2) follows by using the estimates (7.3)–(7.5).

8. Lower bounds for K(α,δ)
n (x, y)

The result to be proved here is the following.

Lemma (8.1). If α > −1 and δ > 0, then there are positive constants C, H, L
and h, independent of x, y and n, a positive constant N , independent of x and y,
and a set E = E(n) ⊂ [1/ν, ν/2] satisfying

|E ∩ [r, 9r]| ≥ r(8.2)

for H/ν ≤ r ≤ Lν/9, such that

K(α,δ)
n (x, y) ≥ Cx−δ/2−3/4yα/2να/2−δ/2+1/4

for n ≥ 1, x ∈ E ∩ [H/ν, Lν] and y ∈ [0, h/ν], and

K(α,δ)
n (x, y) ≥ Cνα/2−δ−1/3yα/2

for n even, n ≥ N , x ∈ [ν − 8, ν] and y ∈ [0, h/ν].
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The proof will make extensive use of the notation and proofs in [14]. Define

K(α,δ)
n (x, y) =

1
Aδn

n∑
i=0

Aδn−i
i!

Γ(α+ i+ 1)
L

(α)
i (x)L(α)

i (y)(8.3)

and

M (α)
n (x) = (ν/x)α/2ex/2M(α)

n (x)(8.4)

and note that

K(α,δ)
n (x, y) = e(x+y)/2(xy)−α/2K(α,δ)

n (x, y)(8.5)

and

|L(α)
n (x)| ≤ CM (α)

n (x)(8.6)

uniformly for x ≥ 0 and n a nonnegative integer. We will first prove the following.

Lemma (8.7). If α > −1 and m is a positive integer, then there is a C, indepen-
dent of n, x and y, such that∣∣∣∣ ∂∂yK(α,m)

n (x, y)
∣∣∣∣ ≤ Cν1−α−m

(
ν + x

ν−1 + x

)(m+1)/2

M (α)
n (x)M (α)

n (y)

for n ≥ 0, 0 ≤ y ≤ 1/ν and 2y ≤ x.

To prove Lemma (8.7) we may assume n ≥ 1 since the result is trivial for n = 0.
If x ≤ 2/ν use the fact that

(d/dy)L(α)
n (y) = −L(α+1)

n−1 (y)(8.8)

and (8.6) directly in the definition (8.3) to get∣∣∣∣ ∂∂yK(α,m)
n (x, y)

∣∣∣∣ ≤ Cn−m n∑
i=0

(n− i + 1)m(i + 1)−α(i+ 1)α(i + 1)α+1.

The right side is easily seen to have the bound Cνα+2, and this is bounded by the
right side of the conclusion of Lemma (8.7).

For the rest of the proof we will assume, therefore, that n ≥ 1 and x ≥ 2/ν. The
proof is based on expression (35) in [14], namely

K(α,m)
n (x, y) =

(x− y)−1−2mn!(
m+n
n

)
Γ(n+ α+ 1)

[
xy(x− y)AmA(α)

n (x)A(α)
n (y)

− xBmA(α)
n (x)L(α)

n (y) + yB̄mL
(α)
n (x)A(α)

n (y) + (x− y)CmL(α)
n (x)L(α)

n (y)

]
,

(8.9)

where A(α)
n (x) = 2L(α+1)

n (x) − L(α)
n (x) and Am, Bm, B̄m and Cm are polynomi-

als in x, y and n. For polynomials p(x, y, n) in these variables there is a unique
representation in the form

∑
ai,j,k(x − y)i(x + y)j(2ν − x − y)k and we define

p#(x, y, n) =
∑
|ai,j,k‖x− y|i|x+ y|j(|ν−x|+ |ν− y|+ ν1/3)k. It is immediate that

|p(x, y, n)| ≤ p#(x, y, n)(8.10)

and that, for (x, y, n) satisfying the conditions of the lemma and x ≥ 2/ν, that∣∣∣∣ ∂∂yp(x, y, n)
∣∣∣∣ ≤ Cx−1p#(x, y, n).(8.11)
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Under these condition it is shown in the proof of Lemma D.2 in §3 of [14] that
A#
m ≤ CA∗m, B#

m + B̄#
m ≤ C(B∗(+),m + x−1B∗(−),m) and C#

m ≤ C∗m. The quantities
on the right sides of these inequalities are defined in Proposition D.1 in §3 of [14] and
are shown there to have the respective bounds C[x3(ν+x)](m−1)/2, C[x3(ν+x)]m/2

and Cx(ν + x)[x3(ν + x)](m−1)/2 for x, y, and n satisfying the conditions of this
part of the proof. Combining these estimates with (8.10) and (8.11) shows that

|Am|+ x

∣∣∣∣∂Am∂y
∣∣∣∣ ≤ C[x3(ν + x)](m−1)/2,(8.12)

|Bm|+ |B̄m|+ x

(∣∣∣∣∂Bm∂y
∣∣∣∣+
∣∣∣∣∂B̄m∂y

∣∣∣∣) ≤ C[x3(ν + x)]m/2(8.13)

and

|Cm|+ x

∣∣∣∣∂Cm∂y
∣∣∣∣ ≤ Cx(ν + x)[x3(ν + x)](m−1)/2.(8.14)

By Proposition C.1 in §3 of [14] for x ≥ 2/ν we have∣∣∣A(α)
n (x)

∣∣∣ ≤ C (ν1/3 + |x− ν|
x

)1/2

M (α)
n (x),(8.15)

while from (8.8), (8.6) and the definition of A(α)
n we have

|L(α)
n (y)|+ ν−1

∣∣∣∣∣∂L(α)
n (y)
∂y

∣∣∣∣∣ ≤ CM (α)
n (y)(8.16)

and

|A(α)
n (y)|+ ν−1

∣∣∣∣∣∂A(α)
n (y)
∂y

∣∣∣∣∣ ≤ CνM (α)
n (y).(8.17)

The proof of Lemma (8.7) is then completed by differentiating the right side of
(8.9) with respect to y and using (8.6) and (8.12)–(8.17) to estimate the absolute
value of each resulting term.

Next we need an estimate of |(∂/∂y)K(α,δ)
n (x, y)|, valid for all δ > 0; this is given

by Lemma (8.18).

Lemma (8.18). If α > −1 and δ > 0, then there is a C, independent of x, y and
n, such that ∣∣∣∣ ∂∂yK(α,δ)

n (x, y)
∣∣∣∣ ≤ C ex/2να/2−δ/2+3/2x−α/2−δ/2−3/4(

ν1/3 + |x− ν|
)1/4(8.19)

for n ≥ 0, 0 ≤ y ≤ 1/ν and 2/ν ≤ x ≤ ν.

This is proved by differentiating the conclusion of Proposition A.1 in §5 of [14]
and using the estimate of Lemma (8.7) with ϑ = bn− (ν/x)1/2c. The proof is like
the proof of Theorem B.1 in §5 of [14]. For the range of x and y of this lemma the
estimates for |(∂/∂y)K(α,j)

n (x, y)| given by Lemma (8.7) are bounded by ν times the
estimates used for |K(α,j)

n (x, y)| in the proof of Theorem B.1 in §5 of [14]. Therefore,
that proof gives a bound here of ν times the bound obtained there and completes
the proof of this lemma.
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To complete the proof of the first part of Lemma (8.1), observe from the fact,
(5.1.6) on page 101 of [11],

L(α)
n (x) =

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
,

used in (8.3) that

K(α,δ)
n (x, 0) =

1
AδnΓ(α+ 1)

L(α+δ+1)
n (x).(8.20)

Now define the set E to be the set where the cosine terms in (7.4) and (7.5) for
L(α+δ+1)
n (x) are greater than 1/2. From the form of the arguments of the cosines

the inequality (8.2) follows for G/ν ≤ r ≤ Lν for suitably chosen G ≥ 2 and
L ≤ 1/2. From (8.20), (2.1), (7.4) and (7.5) we have

K(α,δ)
n (x, 0) ≥ C1e

x/2να/2−δ/2+1/4x−α/2−δ/2−3/4
(

1− C2(νx)−1/2
)

(8.21)

for x ∈ E ∩ [2/ν, ν/2]. Now with H = max(4C2
2 , G) we get from (8.21) that

K(α,δ)
n (x, 0) ≥ C1

2
ex/2να/2−δ/2+1/4x−α/2−δ/2−3/4(8.22)

for x ∈ E ∩ [H/ν, Lν]. From Lemma (8.18)∣∣∣∣ ∂∂yK(α,δ)
n (x, y)

∣∣∣∣ ≤ C3e
x/2να/2−δ/2+5/4x−α/2−δ/2−3/4

for 0 ≤ y ≤ 1/ν. Therefore, if h = min(1, C1/(4C3)),∣∣∣K(α,δ)
n (x, y)−K(α,δ)

n (x, 0)
∣∣∣ ≤ (C1/4)yex/2να/2−δ/2+5/4x−α/2−δ/2−3/4(8.23)

for 0 ≤ y ≤ h/ν. Then we get from (8.22) and (8.23) that

K(α,δ)
n (x, y) ≥ C1

4
ex/2να/2−δ/2+1/4x−α/2−δ/2−3/4

for y ∈ [0, h/ν] and x ∈ E ∩ [H/ν, Lν]. This is equivalent to the first conclusion of
Lemma (8.1).

For the second conclusion we start by using (8.20) and (8.22.11), page 201 of
[11] to obtain

K(α,δ)
n (x, 0) ≥ C1x

−δ−1/3ex/2
(

1− C2n
−2/3

)
(8.24)

for n even and ν − 8 ≤ x ≤ ν. From Lemma (8.18)∣∣∣∣ ∂∂yK(α,δ)
n (x, y)

∣∣∣∣ ≤ C3e
x/2x2/3−δ

for 0 ≤ y ≤ 1/ν and ν−8 ≤ x ≤ ν. Therefore, if h = min(1, C1/(4C3)), 0 ≤ y ≤ h/ν
and ν − 8 ≤ x ≤ ν, we have∣∣∣K(α,δ)

n (x, y)−K(α,δ)
n (x, 0)

∣∣∣ ≤ C1

4
ex/2x−δ−1/3.

Then, with N > (2C2)3/2 we have

K(α,δ)
n (x, y) ≥ C1

4
x−δ−1/3ex/2

for n ≥ N , n even, 0 < y ≤ h/ν and ν − 8 ≤ x ≤ ν. The result follows from (8.5).
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9. Conclusion of necessity proofs

Here we complete the proof of the necessity part of Theorem (2.29) by showing
that (1.1) implies (2.9), (2.12) and the pair restrictions involving them. After that
we prove as Theorem (9.3) the fact that (2.26) is necessary for (1.2). Finally we will
complete the proof of Theorem (2.32) by showing that the conditions in Sp that
have not previously been shown to be necessary for (1.2) are necessary for (2.33).

To show that (2.12) is a necessary condition for (1.1), take f(x) = χ[h/(2ν),h/ν](x),
where h is the constant in Lemma (8.1). By that lemma then

|σ(α,δ)
n (f, x)| ≥ Cν−δ/2−3/4x−δ/2−3/4

for x in E ∩ [H/ν, Lν]. Using this in (1.1) shows that

ν−δ/2−3/4‖χE∩[H/ν,Lν]x
a−δ/2−3/4(1 + x)b−a‖p ≤ Cν−A−1/p.(9.1)

Restricting the integration in the norm to E ∩ [1, 9] and using (8.2) then gives
ν−δ/2−3/4 ≤ Cν−A−1/p, and this implies (2.12).

If (2.11) and (2.12) were both equalities, then a = A = 3/4+δ/2−1/p and (9.1)
with x integration restricted to E ∩ [h/ν, 1] would imply

ν−δ/2−3/4‖χE∩[H/ν,1]x
−1/p‖p ≤ Cν−δ/2−3/4.

Since the norm in this case is bounded below by C(log ν)1/p, we have a contradiction
and conclude that (2.11) and (2.12) can not both be equalities if p <∞. Similarly,
if (2.12) and (2.16) were both equalities we could take f(x) = χE∩[1,Lν] and have
the same contradiction for p < ∞. If p = ∞, then (2.17) implies that (2.16) is
strict.

For (2.9) we start with the fact (from Lemma (8.1) andK(α,δ)
n (x, y) = K(α,δ)

n (y, x))
that

|K(α,δ)
n (x, y| ≥ Cxα/2y−δ/2−3/4να/2−δ/2+1/4

for x ∈ [0, h/ν] and y ∈ E ∩ [H/ν, Lν]. Using this in (1.1) and restricting the
integration in the norm to [h/(2ν), h/ν] shows that

ν−a−δ/2−1/p+1/4

∣∣∣∣∣
∫
E∩[H/ν,Lν]

|f(y)|dy
yδ/2+3/4

∣∣∣∣∣ ≤ C
∥∥∥∥f(x)χE∩[H/ν,Lν](x)

x−A(1 + x)A−B

∥∥∥∥
p

.(9.2)

Taking f(x) = χ[1,9] in (9.2) will then show that (2.9) is necessary. If (2.9) and
(2.11) were both equalities, we would have a = A = 1/4 − δ/2 − 1/p. Taking
f(x) = xδ/2−1/4χ[H/ν,1] in (9.2) leads to log ν ≤ C(log ν)1/p and shows those two
equalities are incompatible if p > 1. If (2.9) and (2.15) were both equalities, taking
f(x) = xδ/2−1/4χE∩[1,Lν] leads to the same contradiction for p > 1 For p = 1 (2.15)
can not be an equality because of (2.14). This completes the proof of Theorem
(2.29).

Theorem (9.3). If 1 < p ≤ ∞, α > −1, δ > 0 and (1.2) holds with C independent
of f , then (2.26) is satisfied.

To prove this, let N , C and h be the constants in Lemma (8.1) and let n be an
even integer greater than N and 2. Let f(y) = χ[h/(6ν),h/(3ν)](y). From (1.2) then∥∥∥∥∥χ[ν,2ν](x)xb

∫ h/(3ν)

h/(6ν)

K(α,δ)
j (x, y)dy

∥∥∥∥∥
p

≤ C
∥∥χ[h/(6ν),h/(3ν)]y

A
∥∥
p
,(9.4)
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where j = 2b(x− 2α− 2)/8c+ 2 and bwc denotes the greatest integer less than or
equal to w. For this choice of j and x ∈ [ν, 2ν] we have ν(j) − 8 ≤ x < ν(j) and
ν(j) ≤ 2ν + 8 ≤ 3ν, where ν(j) = 4j + 2α+ 2. Therefore, in (9.4) y ≤ h/ν(j) and
by using Lemma (8.1) in (9.4) we get∥∥∥∥∥χ[ν,2ν](x)xb+α/2−δ−1/3

∫ h/(3ν)

h/(6ν)

yα/2dy

∥∥∥∥∥
p

≤ Cν−A−1/p.

Computing the norm and using the fact that the resulting inequality must hold for
arbitrarily large ν then proves (2.26).

Finally, to complete the proof of Theorem (2.32) note that the only inequalities
that have not already been shown to be necessary for (1.2) are (2.25), (2.27) and
(2.28). We will first prove the necessity of these inequalities for (2.33) and then
show that the additional pair conditions are satisfied.

Replacing τ by τ8 in (2.33) and taking ν = x, we get the inequality∥∥∥∥∥χ[4,∞)(x)xb−
7
12−δ

∫ x/2

0

y
α
2−A(1 + y)A−B

(y + x−1)
1
4 +α

2
|f(y)|dy

∥∥∥∥∥
p

≤ C‖f‖p.(9.5)

Given w ≥ 2, let f be the characteristic function of [w/4, w/2], take the norm in
(9.5) over [w, 2w] and the inner integral over [w/4, w/2]. This shows that

wb−7/12−δ+1/pw3/4−B ≤ Cw1/p.

Since this is true for all w > 2, it follows that (2.28) holds. With f the characteristic
function of [1/2,1] we see from (9.5) that∥∥∥χ[4,∞)(x)xb−

7
12−δ

∥∥∥
p
≤ C.

from which (2.27) follows.
Next, use τ5 in (2.33) and take ν = x−1 to get∥∥∥∥χ[0,1/4](x)xa−

1
4 + δ

2

∫ 1

2x

y−A−
3
4−

δ
2 |f(y)|dy

∥∥∥∥
p

≤ C‖f‖p.

With f the characteristic function of [1/2,1] this gives
∥∥∥χ[0,1/4](x)xa−

1
4 + δ

2

∥∥∥
p
≤ C,

which implies (2.25).
Of the pair conditions in Sp, one is stated for p = 1 only and for two others,

the pair (2.11) and (2.13) and the pair (2.13) and (2.26), equality in both could
only occur for p = 1. Since Theorem (2.32) only concerns p > 1, these need not be
considered. Five pair conditions are stated in the same way in the Sp conditions
and in the Np conditions and were proved necessary in §7. Two involve (2.25);
since equality in (2.25) implies equality in (2.9), these have been treated in this
section. Equality in both (2.26) and (2.27) can occur only if p = ∞, b = δ + 7/12
and A = 3/4. Using these values, taking f(x) ≡ 1 in (9.5) and restricting the
inner integral to [1/x, 1] leads to the contradiction

∥∥∥χ[4,∞](x)
∫ 1

1/x y
−1dy

∥∥∥
∞
≤ C.

Similarly, if (2.27) and (2.28) are both equalities, then p = ∞, b = δ + 7/12 and
B = 3/4. Taking f(x) ≡ 1 in (9.5) and restricting the inner integral to [1, x/2]
again leads to a contradiction. This completes the proof of Theorem (2.32).
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10. Extension of Theorem (2.30)

The condition (2.28) is not a necessary condition for Theorem (2.30). This can
be seen by starting with the fact implied by Theorem (2.30) that

‖ sup
n≥0

(|σ(α,δ)
n (f, x)|)‖2 ≤ C‖f(x)‖2(10.1)

for δ ≥ 1/6. A result of Bonami and Clerc, Lemma (3.5), page 238 of [2], asserts that
if the inequality (10.1) holds for one δ > 0, then it holds for all δ > 0. Therefore,
(10.1) is also valid for 0 < δ < 1/6. This fact can be used to prove the following
extension of Theorem (2.30).

Theorem (10.2). If 0 < δ < 1/6, α > −1, 2/(1+6δ) < p < 2/(1−6δ), h = 1/2−
1/p, a > max(−3δ(α+1)+h,−2δ+h), A−a ≤ 0, A < min(3δ(α+1)+h, 2δ+h, ),
a + B > max(−5δ + 4h/3,−4δ + 2h), A + b < 3δ + 2h, b < 3δ/2 + h, b − B ≤ 0
and B > max(−7δ/2 + h/3,−5δ/2 + h), then (1.2) holds with C independent of f .

The idea for this theorem and the proof are from the remark above Proposition
4.3, page 325 of [10]. The method of Chapter VII, §5 of [9] is used to interpolate
between inequalities of the form

∫ ∞
0

[
xad

(1 + x)ad−bd
sup
n≥0
|σ(α,δ)
n (f, x)|

]q
x2ad(1 + x)2bd−2ad

dx ≤ C
∫ ∞

0

∣∣xAd(1 + x)(B−A)df(x)
∣∣q

x2Ad(1 + x)2Bd−2Ad
dx,

where d = p/(p − 2). For one end of the interpolation take q = 2 and δ = s for
suitably small positive s. At the other end use δ = 1/6 and q = p0 where 1/p0 =
1/2 −∆/(2d) and ∆ = (1 − 6s)/(6δ − 6s). The q = 2 inequality is automatically
satisfied because of (10.1). For p0 we will use Theorem (2.30). Therefore, we require
that the Sp conditions hold with p replaced by p0, δ by 1/6, a by a∆, b by b∆,
A by A∆ and B by B∆. To make these inequalities true for some s > 0 requires
exactly the hypotheses of this theorem.

References

[1] Richard Askey and Stephen Wainger, Mean convergence of expansions in Laguerre and Her-
mite series, Amer. J. Math. 87 (1965), 695-708. MR 32:316

[2] Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements
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