Two-weight norm inequalities for Cesàro means of Laguerre expansions
HTML articles powered by AMS MathViewer
- by Benjamin Muckenhoupt and David W. Webb
- Trans. Amer. Math. Soc. 353 (2001), 1119-1149
- DOI: https://doi.org/10.1090/S0002-9947-00-02729-X
- Published electronically: November 14, 2000
- PDF | Request permission
Abstract:
Two-weight $L^{p}$ norm inequalities are proved for Cesàro means of Laguerre polynomial series and for the supremum of these means. These extend known norm inequalities, even in the single power weight and “unweighted” cases, by including all values of $p\geq 1$ for all positive orders of the Cesàro summation and all values of the Laguerre parameter $\alpha >-1$. Almost everywhere convergence results are obtained as a corollary. For the Cesàro means the hypothesized conditions are shown to be necessary for the norm inequalities. Necessity results are also obtained for the norm inequalities with the supremum of the Cesàro means; in particular, for the single power weight case the conditions are necessary and sufficient for summation of order greater than one sixth.References
- Richard Askey and Stephen Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695–708. MR 182834, DOI 10.2307/2373069
- Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263 (French). MR 338697, DOI 10.1090/S0002-9947-1973-0338697-5
- C. Markett, Norm estimates for Cesàro means of Laguerre expansions, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 419–435. MR 649449
- C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), no. 1, 19–37 (English, with Russian summary). MR 662701, DOI 10.1007/BF02073769
- Benjamin Muckenhoupt, Asymptotic forms for Laguerre polynomials, Proc. Amer. Math. Soc. 24 (1970), 288–292. MR 251272, DOI 10.1090/S0002-9939-1970-0251272-9
- Benjamin Muckenhoupt, Mean convergence of Hermite and Laguerre series. I, II, Trans. Amer. Math. Soc. 147 (1970), 419–431; ibid. 147 (1970), 433–460. MR 0256051, DOI 10.1090/S0002-9947-1970-0256051-9
- Eileen L. Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972), 1–31. MR 310537, DOI 10.1090/S0002-9947-1972-0310537-9
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Sundaram Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, vol. 42, Princeton University Press, Princeton, NJ, 1993. With a preface by Robert S. Strichartz. MR 1215939, DOI 10.1515/9780691213927
- S. Thangavelu, Summability of Laguerre expansions, Anal. Math. 16 (1990), no. 4, 303–315 (English, with Russian summary). MR 1094185, DOI 10.1007/BF02630363
- David Webb, Pointwise estimates of the moduli of Cesàro-Laguerre kernels, to appear.
Bibliographic Information
- Benjamin Muckenhoupt
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019
- Email: muckenho@math.rutgers.edu
- David W. Webb
- Affiliation: Department of Mathematics, DePaul University, Chicago, Illinois 60614-3504
- Email: dwebb@condor.depaul.edu
- Received by editor(s): May 28, 1999
- Published electronically: November 14, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 1119-1149
- MSC (1991): Primary 42C10
- DOI: https://doi.org/10.1090/S0002-9947-00-02729-X
- MathSciNet review: 1804415