Metrics and embeddings of generalizations of Thompson’s group $F$
HTML articles powered by AMS MathViewer
- by J. Burillo, S. Cleary and M. I. Stein
- Trans. Amer. Math. Soc. 353 (2001), 1677-1689
- DOI: https://doi.org/10.1090/S0002-9947-00-02650-7
- Published electronically: December 18, 2000
- PDF | Request permission
Abstract:
The distance from the origin in the word metric for generalizations $F(p)$ of Thompson’s group $F$ is quasi-isometric to the number of carets in the reduced rooted tree diagrams representing the elements of $F(p)$. This interpretation of the metric is used to prove that every $F(p)$ admits a quasi-isometric embedding into every $F(q)$, and also to study the behavior of the shift maps under these embeddings.References
- Bieri, R. and Strebel, R., On groups of PL-homeomorphisms of the real line, Notes, Math. Sem. der Univ. Frankfurt, 1985.
- Matthew G. Brin and Fernando Guzmán, Automorphisms of generalized Thompson groups, J. Algebra 203 (1998), no. 1, 285–348. MR 1620674, DOI 10.1006/jabr.1997.7315
- Kenneth S. Brown, Finiteness properties of groups, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 45–75. MR 885095, DOI 10.1016/0022-4049(87)90015-6
- Kenneth S. Brown and Ross Geoghegan, An infinite-dimensional torsion-free $\textrm {FP}_{\infty }$ group, Invent. Math. 77 (1984), no. 2, 367–381. MR 752825, DOI 10.1007/BF01388451
- José Burillo, Quasi-isometrically embedded subgroups of Thompson’s group $F$, J. Algebra 212 (1999), no. 1, 65–78. MR 1670622, DOI 10.1006/jabr.1998.7618
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215–256. MR 1426438
- Sean Cleary, Groups of piecewise-linear homeomorphisms with irrational slopes, Rocky Mountain J. Math. 25 (1995), no. 3, 935–955. MR 1357102, DOI 10.1216/rmjm/1181072197
- Fordham, S.B., Minimal Length Elements of Thompson’s Group $F$, Thesis, Brigham Young University, 1995.
- Victor Guba and Mark Sapir, Diagram groups, Mem. Amer. Math. Soc. 130 (1997), no. 620, viii+117. MR 1396957, DOI 10.1090/memo/0620
- Graham Higman, Finitely presented infinite simple groups, Notes on Pure Mathematics, No. 8, Australian National University, Department of Pure Mathematics, Department of Mathematics, I.A.S., Canberra, 1974. MR 0376874
- Melanie Stein, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992), no. 2, 477–514. MR 1094555, DOI 10.1090/S0002-9947-1992-1094555-4
Bibliographic Information
- J. Burillo
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08192 Barcelona, Spain
- Address at time of publication: Department of Applied Mathematics, University Politecnica de Catalunya, Campus Nord, Jordi Girona 1, 08034 Barcelona, Spain
- Email: burillo@mat.upc.es
- S. Cleary
- Affiliation: Department of Mathematics, City College of CUNY, New York, New York 10031
- Email: cleary@math0.sci.ccny.cuny.edu
- M. I. Stein
- Affiliation: Department of Mathematics, Trinity College, Hartford, Connecticut 06106
- Email: mstein@mail.trincoll.edu
- Received by editor(s): September 25, 1998
- Received by editor(s) in revised form: August 11, 1999
- Published electronically: December 18, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 1677-1689
- MSC (2000): Primary 20F65; Secondary 20F05, 20F38, 20E99, 05C25
- DOI: https://doi.org/10.1090/S0002-9947-00-02650-7
- MathSciNet review: 1806724