Noncrossed products over $k_{\mathfrak {p}}(t)$
HTML articles powered by AMS MathViewer
- by Eric S. Brussel PDF
- Trans. Amer. Math. Soc. 353 (2001), 2115-2129 Request permission
Abstract:
Noncrossed product division algebras are constructed over rational function fields $k(t)$ over number fields $k$ by lifting from arithmetic completions $k(t)_{\mathfrak {p}}$. The existence of noncrossed products over $\mathfrak {p}$-adic rational function fields $k_{\mathfrak {p}}(t)$ is proved as a corollary.References
- S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408β420. MR 318216, DOI 10.1007/BF02764632
- S. A. Amitsur and D. Saltman, Generic Abelian crossed products and $p$-algebras, J. Algebra 51 (1978), no.Β 1, 76β87. MR 491789, DOI 10.1016/0021-8693(78)90136-9
- JΓ³n Kr. Arason, Burton Fein, Murray Schacher, and Jack Sonn, Cyclic extensions of $K(\sqrt {-1})/K$, Trans. Amer. Math. Soc. 313 (1989), no.Β 2, 843β851. MR 929665, DOI 10.1090/S0002-9947-1989-0929665-2
- Artin, E., Tate, J.: Class Field Theory, Addison-Wesley, Reading, Mass., 1967.
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- Eric Brussel, Noncrossed products and nonabelian crossed products over $\mathbf Q(t)$ and $\mathbf Q((t))$, Amer. J. Math. 117 (1995), no.Β 2, 377β393. MR 1323680, DOI 10.2307/2374919
- J. W. S. Cassels and A. FrΓΆhlich (eds.), Algebraic number theory, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986. Reprint of the 1967 original. MR 911121
- Burton Fein, David J. Saltman, and Murray Schacher, Brauer-Hilbertian fields, Trans. Amer. Math. Soc. 334 (1992), no.Β 2, 915β928. MR 1075382, DOI 10.1090/S0002-9947-1992-1075382-0
- Bill Jacob and Adrian Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), no.Β 1, 126β179. MR 1031915, DOI 10.1016/0021-8693(90)90047-R
- Nathan Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996. MR 1439248, DOI 10.1007/978-3-642-02429-0
- I. Reiner, Maximal orders, London Mathematical Society Monographs, No. 5, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1975. MR 0393100
- David J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no.Β 3, 250β283. MR 648801, DOI 10.1016/0001-8708(82)90036-6
- David J. Saltman, Division algebras over $p$-adic curves, J. Ramanujan Math. Soc. 12 (1997), no.Β 1, 25β47. MR 1462850
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623β627. MR 13
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
Additional Information
- Eric S. Brussel
- Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- Email: brussel@mathcs.emory.edu
- Received by editor(s): December 8, 1998
- Received by editor(s) in revised form: September 13, 1999
- Published electronically: November 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2115-2129
- MSC (2000): Primary 16K20; Secondary 11R37
- DOI: https://doi.org/10.1090/S0002-9947-00-02626-X
- MathSciNet review: 1813610