Spaces of rational loops on a real projective space

Author:
Jacob Mostovoy

Journal:
Trans. Amer. Math. Soc. **353** (2001), 1959-1970

MSC (2000):
Primary 26C15, 55P35

DOI:
https://doi.org/10.1090/S0002-9947-01-02644-7

Published electronically:
January 3, 2001

MathSciNet review:
1813601

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the loop spaces on real projective spaces are topologically approximated by the spaces of rational maps $\mathbf {RP}^{1}\rightarrow \mathbf {RP}^{n}$. As a byproduct of our constructions we obtain an interpretation of the Kronecker characteristic (degree) of an ornament via particle spaces.

- C. P. Boyer, B. M. Mann, J. C. Hurtubise, and R. J. Milgram,
*The topology of the space of rational maps into generalized flag manifolds*, Acta Math.**173**(1994), no. 1, 61–101. MR**1294670**, DOI https://doi.org/10.1007/BF02392569 - C. Boyer, J. Hurtubise ; R. J. Milgram,
*Stability theorems for spaces of rational curves.*Preprint, 1999, arXiv:math.AG/9903099 - R. W. Brockett,
*Some geometric questions in the theory of linear systems*, Proceedings of the IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes (Houston, Tex., 1975) Inst. Electr. Electron. Engrs., New York, 1975, pp. 71–76. MR**0469385** - Martin A. Guest,
*The topology of the space of rational curves on a toric variety*, Acta Math.**174**(1995), no. 1, 119–145. MR**1310847**, DOI https://doi.org/10.1007/BF02392803 - M. A. Guest, A. Kozlowski ; K. Yamaguchi,
*Spaces of polynomials with roots of bounded multiplicity.*Fund. Math.**161**(1999), 93–117. - Morris W. Hirsch,
*Differential topology*, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 33. MR**0448362** - L. Kronecker,
*Über Systeme von Funktionen mehrerer Variabeln.*Monatsberichte Berl. Acad. (1869), 159–193 and 688–698. - A. Kozlowski ; K. Yamaguchi,
*Topology of complements of discriminants and resultants.*J. Math. Soc. Japan**52**(2000), 949–959. - S. Lefschetz,
*Topology.*AMS Colloquium Publications, New York, 1930. - Dusa McDuff,
*Configuration spaces of positive and negative particles*, Topology**14**(1975), 91–107. MR**358766**, DOI https://doi.org/10.1016/0040-9383%2875%2990038-5 - J. Milnor,
*Morse theory*, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR**0163331** - Graeme Segal,
*The topology of spaces of rational functions*, Acta Math.**143**(1979), no. 1-2, 39–72. MR**533892**, DOI https://doi.org/10.1007/BF02392088 - Victor A. Vassiliev,
*Invariants of ornaments*, Singularities and bifurcations, Adv. Soviet Math., vol. 21, Amer. Math. Soc., Providence, RI, 1994, pp. 225–262. MR**1310605**, DOI https://doi.org/10.1002/cpa.3160471102 - Victor A. Vassiliev,
*Topology of discriminants and their complements*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 209–226. MR**1403923** - V. A. Vassiliev,
*Complements of discriminants of smooth maps: topology and applications*, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by B. Goldfarb. MR**1168473** - K. Yamaguchi,
*Complements of resultants and homotopy types*, J. Math. Kyoto Univ.**39**(1999), 675–684.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
26C15,
55P35

Retrieve articles in all journals with MSC (2000): 26C15, 55P35

Additional Information

**Jacob Mostovoy**

Affiliation:
Instituto de Matemáticas (Unidad Cuernavaca), Universidad Nacional Autónoma de México, A.P. 273-3, C.P. 62251, Cuernavaca, Morelos, México

MR Author ID:
628517

Email:
jacob@matcuer.unam.mx

Keywords:
Loop space,
rational map,
ornament,
Kronecker characteristic

Received by editor(s):
June 2, 1998

Received by editor(s) in revised form:
October 18, 1999

Published electronically:
January 3, 2001

Article copyright:
© Copyright 2001
American Mathematical Society