Vector $A_2$ weights and a Hardy-Littlewood maximal function
HTML articles powered by AMS MathViewer
- by Michael Christ and Michael Goldberg
- Trans. Amer. Math. Soc. 353 (2001), 1995-2002
- DOI: https://doi.org/10.1090/S0002-9947-01-02759-3
- Published electronically: January 5, 2001
- PDF | Request permission
Abstract:
An analogue of the Hardy-Littlewood maximal function is introduced, for functions taking values in finite-dimensional Hilbert spaces. It is shown to be $L^2$ bounded with respect to weights in the class $A_2$ of Treil, thereby extending a theorem of Muckenhoupt from the scalar to the vector case.References
- Michael Christ, Weighted norm inequalities and Schur’s lemma, Studia Math. 78 (1984), no. 3, 309–319. MR 782668, DOI 10.4064/sm-78-3-309-319
- Michael Christ and Robert Fefferman, A note on weighted norm inequalities for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 87 (1983), no. 3, 447–448. MR 684636, DOI 10.1090/S0002-9939-1983-0684636-9
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. A. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65–124. MR 1114608, DOI 10.2307/2944333
- M. Goldberg, manuscript in preparation.
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- F. L. Nazarov and S. R. Treĭl′, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis, Algebra i Analiz 8 (1996), no. 5, 32–162 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 5, 721–824. MR 1428988
- Fedor Nazarov and Sergei Treil, The weighted norm inequalities for Hilbert transform are now trivial, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 7, 717–722 (English, with English and French summaries). MR 1416164
- Fedor Nazarov, Serguei Treil, and Alexander Volberg, Counterexample to the infinite-dimensional Carleson embedding theorem, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 4, 383–388 (English, with English and French summaries). MR 1467091, DOI 10.1016/S0764-4442(97)85621-2
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781, DOI 10.1090/S0894-0347-99-00310-0
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Hans Schwinn, Absolute summability of orthogonal series by Euler-means, Analysis 2 (1982), no. 1-4, 219–230. MR 732332, DOI 10.1524/anly.1982.2.14.219
- S. R. Treil′, An operator approach to weighted estimates of singular integrals, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135 (1984), 150–174 (Russian, with English summary). Investigations on linear operators and the theory of functions, XIII. MR 741704
- S. R. Treil′, Geometric methods in spectral theory of vector-valued functions: some recent results, Toeplitz operators and spectral function theory, Oper. Theory Adv. Appl., vol. 42, Birkhäuser, Basel, 1989, pp. 209–280. MR 1030053, DOI 10.1007/978-3-0348-5587-7_{5}
- S. R. Treil and A. L. Volberg, Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator, Algebra i Analiz 7 (1995), no. 6, 205–226; English transl., St. Petersburg Math. J. 7 (1996), no. 6, 1017–1032. MR 1381983
- S. Treil and A. Volberg, Wavelets and the angle between past and future, J. Funct. Anal. 143 (1997), no. 2, 269–308. MR 1428818, DOI 10.1006/jfan.1996.2986
- Sergei Treil and Alexander Volberg, Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem, Ark. Mat. 35 (1997), no. 2, 363–386. MR 1478786, DOI 10.1007/BF02559975
- Sergei Treil, Alexander Volberg, and Dechao Zheng, Hilbert transform, Toeplitz operators and Hankel operators, and invariant $A_\infty$ weights, Rev. Mat. Iberoamericana 13 (1997), no. 2, 319–360. MR 1617653, DOI 10.4171/RMI/223
- A. Volberg, Matrix $A_p$ weights via $S$-functions, J. Amer. Math. Soc. 10 (1997), no. 2, 445–466. MR 1423034, DOI 10.1090/S0894-0347-97-00233-6
Bibliographic Information
- Michael Christ
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- MR Author ID: 48950
- Email: mchrist@math.berkeley.edu
- Michael Goldberg
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- MR Author ID: 674280
- ORCID: 0000-0003-1039-6865
- Email: mikeg@math.berkeley.edu
- Received by editor(s): June 22, 2000
- Published electronically: January 5, 2001
- Additional Notes: The first author was supported in part by NSF grant DMS-9970660. He thanks the staff of the Bamboo Garden hotel in Shenzhen, PRC, for the hospitable atmosphere in which a portion of this work was done
The second author was supported by an NSF graduate fellowship - © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 1995-2002
- MSC (2000): Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-01-02759-3
- MathSciNet review: 1813604