Model category structures on chain complexes of sheaves
HTML articles powered by AMS MathViewer
- by Mark Hovey
- Trans. Amer. Math. Soc. 353 (2001), 2441-2457
- DOI: https://doi.org/10.1090/S0002-9947-01-02721-0
- Published electronically: January 3, 2001
- PDF | Request permission
Abstract:
The unbounded derived category of a Grothendieck abelian category is the homotopy category of a Quillen model structure on the category of unbounded chain complexes, where the cofibrations are the injections. This folk theorem is apparently due to Joyal, and has been generalized recently by Beke. However, in most cases of interest, such as the category of sheaves on a ringed space or the category of quasi-coherent sheaves on a nice enough scheme, the abelian category in question also has a tensor product. The injective model structure is not well-suited to the tensor product. In this paper, we consider another method for constructing a model structure. We apply it to the category of sheaves on a well-behaved ringed space. The resulting flat model structure is compatible with the tensor product and all homomorphisms of ringed spaces.References
- Tibor Beke, Sheafifiable homotopy model categories, preprint, 1999.
- J. Daniel Christensen, Derived categories and projective classes, preprint, 1998.
- W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR 1361887, DOI 10.1016/B978-044481779-2/50003-1
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 1388895, DOI 10.1090/memo/0610
- A. Joyal, Letter to A. Grothendieck, 1984.
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- Joseph Lipman, Notes on derived categories and derived functors, preprint, 1998.
- I. Moerdijk and D. A. Pronk, Cohomology of sheaves, lecture notes, 1992.
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432, DOI 10.1007/BFb0097438
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
- Stefan Schwede and Brooke Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000), 491–511.
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953, DOI 10.1007/978-3-642-66066-5
- L. Alonso Tarrío, A. Jeremias López, and M. J. Souto Salorio, Localizations in categories of complexes and unbounded resolutions, Canad. J. Math. 52 (2000), 225–247.
Bibliographic Information
- Mark Hovey
- Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
- Email: hovey@member.ams.org
- Received by editor(s): February 24, 2000
- Published electronically: January 3, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2441-2457
- MSC (2000): Primary 18F20, 14F05, 18E15, 18E30, 18G35, 55U35
- DOI: https://doi.org/10.1090/S0002-9947-01-02721-0
- MathSciNet review: 1814077