Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Complexifications of symmetric spaces and Jordan theory

Author: Wolfgang Bertram
Journal: Trans. Amer. Math. Soc. 353 (2001), 2531-2556
MSC (2000): Primary 17C36, 53C15; Secondary 22E15, 53B35
Published electronically: February 15, 2001
MathSciNet review: 1814081
Full-text PDF

Abstract | References | Similar Articles | Additional Information


Generalizing Hermitian and pseudo-Hermitian spaces, we define twisted complex symmetric spaces, and we show that they correspond to an algebraic object called Hermitian Jordan triple products. The main topic of this work is to investigate the class of real forms of twisted complex symmetric spaces, called the category of symmetric spaces with twist. We show that this category is equivalent to the category of all real Jordan triple systems, and we can use a work of B.O. Makarevic in order to classify the irreducible spaces. The classification shows that most irreducible symmetric spaces have exactly one twisted complexification. This leads to open problems concerning the relation of Jordan and Lie triple systems.

References [Enhancements On Off] (What's this?)

  • [B57] M. Berger, Les espaces symétriques non compacts, Ann. Sci. Ec. Norm. Sup. 74 (3) (1957), 85-177. MR 21:3516
  • [Be96a] W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327. MR 97g:17030
  • [Be96b] W. Bertram, On some causal and conformal groups, J. Lie Theory 6 (1996), 215-244. MR 98d:53076
  • [Be98] W. Bertram, W, Algebraic Structures of Makarevic Spaces. I, Transformation Groups 3, vol.1 (1998), 3-32. MR 99c:32047
  • [Be99] W. Bertram, The geometry of Jordan- and Lie structures, Habilitationsschrift (Clausthal 1999).
  • [Be00] W. Bertram, Conformal group and fundamental theorem for a class of symmetric spaces, Math. Z. 233 (2000), 39-73. CMP 2000:07
  • [FG96] J. Faraut and S. Gindikin, Pseudo-Hermitian symmetric spaces of tube type, Progress in Nonlinear Diff. Equat. 20 (1996), 123-154. MR 97i:32045
  • [Jac51] N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509-530. MR 12:797d
  • [Hel62] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962). MR 26:2986
  • [KanKo85] S. Kaneyuki and M.Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math 8 (1985), 81-98. MR 87c:53078
  • [Koh65] S. Koh, On affine symmetric spaces, Trans. Amer. Math. Soc. 119 (1965), 291-309. MR 32:1643
  • [KoNo69] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. II, Interscience (New York 1969). MR 38:6501
  • [Lo69] O. Loos, Symmetric Spaces I, Benjamin (New York 1969). MR 39:3659
  • [Lo75] O. Loos, Jordan pairs, Springer Lecture Notes in Mathematics, vol. 460 (New York 1975). MR 56:3071
  • [Lo77] O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes (Irvine 1977).
  • [Lo85] O. Loos, Charakterisierung symmetrischer $R$-Räume durch ihre Einheitsgitter, Math. Z. 189 (1985), 211-226. MR 86j:53077
  • [Ma73] B.O. Makarevic, Open symmetric orbits of reductive groups in symmetric $R$-spaces, Math. USSR Sbornik 20 (1973), 406-418.
  • [N80] E. Neher, Klassifikation der einfachen reellen speziellen Jordan-Tripelsysteme, Manuscripta Math. 31 (1980), 197-215. MR 82a:17011
  • [N81] E. Neher, E, Klassifikation der einfachen reellen Ausnahme-Jordan-Tripelsysteme, J. reine angew. Math. 322 (1981), 145-169. MR 82g:17017
  • [N85] E. Neher, On the classification of Lie and Jordan triple systems, Comm. Algebra 13 (1985), 2615-2667. MR 87c:17036
  • [Sa80] I. Satake, Algebraic structures of symmetric domains, Iwanami Shoten (Princeton 1980). MR 82i:32003

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17C36, 53C15, 22E15, 53B35

Retrieve articles in all journals with MSC (2000): 17C36, 53C15, 22E15, 53B35

Additional Information

Wolfgang Bertram
Affiliation: Institut Elie Cartan, Département de Mathématiques, Université Henri Poincaré (Nancy I), B.P. 239, 54506 Vandœuvre-les-Nancy Cedex, France

Keywords: Symmetric space, complexification, Jordan and Lie triple system
Received by editor(s): February 19, 1998
Published electronically: February 15, 2001
Article copyright: © Copyright 2001 American Mathematical Society