Primes in short arithmetic progressions with rapidly increasing differences
HTML articles powered by AMS MathViewer
- by P. D. T. A. Elliott
- Trans. Amer. Math. Soc. 353 (2001), 2705-2724
- DOI: https://doi.org/10.1090/S0002-9947-01-02692-7
- Published electronically: March 12, 2001
- PDF | Request permission
Abstract:
Primes are, on average, well distributed in short segments of arithmetic progressions, even if the associated moduli grow rapidly.References
- M. B. Barban, Multiplicative functionas of $^{\Sigma }R-$equidistributed sequences, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1964 (1964), no. 6, 13–19 (Russian, with Uzbek summary). MR 0176971
- M. B. Barban, The “large sieve” method and its application to number theory, Uspehi Mat. Nauk 21 (1966), no. 1, 51–102 (Russian). MR 0199171
- E. Bombieri, On the large sieve, Mathematika 12 (1965), 201–225. MR 197425, DOI 10.1112/S0025579300005313
- P. D. T. A. Elliott, Probabilistic number theory. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 239, Springer-Verlag, New York-Berlin, 1979. Mean-value theorems. MR 551361, DOI 10.1007/978-1-4612-9989-9
- Elliott, P.D.T.A. Primes, products and polynomials, preprint, to appear.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions, Acta Arith. 45 (1985), no. 3, 273–277. MR 808026, DOI 10.4064/aa-45-3-273-277
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- Heath–Brown, R. Sieve identities and gaps between primes, Journées Arithmétiques, Metz, 1981, Astérisque 94, Soc. Math. de France (1982), 61–65.
- Yu. V. Linnik, All large numbers are sums of a prime and two squares (A problem of Hardy and Littlewood). I, Mat. Sb. (N.S.) 52 (94) (1960), 661–700 (Russian). MR 0120206
- Barkley Rosser, On the first case of Fermat’s last theorem, Bull. Amer. Math. Soc. 45 (1939), 636–640. MR 25, DOI 10.1090/S0002-9904-1939-07058-4
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847, DOI 10.1007/BFb0060851
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- R. V. Uždavinis, On the joint distribution of values of additive arithmetic functions of integral polynomials, Trudy Akad. Nauk Litov. SSR Ser. B 1960 (1960), no. 1 (21), 5–29 (Russian, with Lithuanian summary). MR 0142531
- R. C. Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115. MR 598869, DOI 10.4064/aa-37-1-111-115
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Dieter Wolke, Multiplikative Funktionen auf schnell wachsenden Folgen, J. Reine Angew. Math. 251 (1971), 54–67 (German). MR 289439, DOI 10.1515/crll.1971.251.54
- Dieter Wolke, A new proof of a theorem of van der Corput, J. London Math. Soc. (2) 5 (1972), 609–612. MR 314786, DOI 10.1112/jlms/s2-5.4.609
Bibliographic Information
- P. D. T. A. Elliott
- Affiliation: Department of Mathematics, University of Colorado Boulder, Boulder, Colorado 80309–0395
- Email: pdtae@euclid.colorado.edu
- Received by editor(s): January 7, 1999
- Received by editor(s) in revised form: February 26, 2000
- Published electronically: March 12, 2001
- Additional Notes: Partially supported by NSF contract DMS-9530690
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2705-2724
- MSC (2000): Primary 11N13; Secondary 11B25
- DOI: https://doi.org/10.1090/S0002-9947-01-02692-7
- MathSciNet review: 1828469