Livsic theorems for connected Lie groups

Authors:
M. Pollicott and C. P. Walkden

Journal:
Trans. Amer. Math. Soc. **353** (2001), 2879-2895

MSC (2000):
Primary 58F11; Secondary 58F15

DOI:
https://doi.org/10.1090/S0002-9947-01-02708-8

Published electronically:
March 12, 2001

MathSciNet review:
1828477

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be a hyperbolic diffeomorphism on a basic set and let be a connected Lie group. Let be Hölder. Assuming that satisfies a natural partial hyperbolicity assumption, we show that if is a measurable solution to a.e., then must in fact be Hölder. Under an additional centre bunching condition on , we show that if assigns `weight' equal to the identity to each periodic orbit of , then for some Hölder . These results extend well-known theorems due to Livsic when is compact or abelian.

**[A]**D. V. Anosov,*Geodesic Flows on Closed Riemannian Manifolds with Negative Curvature*, Proc. Steklov Inst., vol. 90, Amer. Math. Soc., Prov., Rhode Island, 1969. MR**39:3527****[B]**R. Bowen,*Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms*, Lecture Notes in Math., vol. 470, Springer-Verlag, Berlin, 1975. MR**56:1364****[BP]**M. I. Brin and Ya. B. Pesin,*Partially hyperbolic dynamical systems*, Math. U.S.S.R., Izv.**8**(1974), 177-218.**[Hl]**P. Halmos,*Measure theory*, Van Nostrand, New York, 1950. MR**11:504d****[Hy]**N. Haydn,*Canonical product structure of equilibrium states*, Random. Comput. Dynam.**2**(1994), 79-96. MR**95c:58133****[KH]**A. Katok and B. Hasselblatt,*Introduction to the Modern Theory of Dynamical Systems*, Encyclopedia of Math., vol. 54, Cambridge Univ. Press, Cambridge, 1995. MR**96c:58055****[L1]**A. N. Livsic,*Homology properties of Y-systems*, Math. Notes**10**(1971), 758-763.**[L2]**A. N. Livsic,*Cohomology of dynamical systems*, Math. U.S.S.R., Izv.**6**(1972), 1278-1301.**[NP]**M. Nicol and M. Pollicott,*Measurable cocycle rigidity for some non-compact groups*, Bull. London. Math. Soc.**31**(1999), 592-600. MR**2000k:37004****[NT]**V. Nitica and A. Török,*Regularity of the coboundary for cohomologous cocycles*, Ergod. Th. & Dyn. Syst.**18**(1998), 1187-1209. MR**2000m:37030****[P]**W. Parry,*The Livsic periodic point theorem for two non-abelian cocycles*, Ergod. Th. & Dyn. Syst.**19**(1999), 687-701. MR**2000d:37019****[PP1]**W. Parry and M. Pollicott,*Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics*, Astérique, vol. 187-188, Société Mathématique de France, 1990. MR**92f:58141****[PP2]**W. Parry and M. Pollicott,*The Livsic cocycle equation for compact Lie group extensions of hyperbolic systems*, J. London Math. Soc.**56**(1997), 405-416. MR**99d:58109****[RS]**D. Ruelle and D. Sullivan,*Currents, flows and diffeomorphisms*, Topology**14**(1975), 319-327. MR**54:3759****[Sc]**K. Schmidt,*Remarks on Livsic' theory for nonabelian cocycles*, Ergod. Th. & Dyn. Syst.**19**(1999), 703-721. MR**2000f:37036****[Si]**Ya. G. Sinai,*Markov partitions and -diffeomorphisms*, Funkts. Anal. Prilozh.**2**(1968), 64-89.**[W1]**C. P. Walkden,*Livsic theorems for hyperbolic flows*, Trans. Amer. Math. Soc.**352**(2000), 1299-1313. MR**2000j:37036****[W2]**C. P. Walkden,*Livsic regularity theorems for twisted cocycle equations over hyperbolic systems*, J. London Math. Soc.**61**(2000), 286-300. CMP**2000:09**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
58F11,
58F15

Retrieve articles in all journals with MSC (2000): 58F11, 58F15

Additional Information

**M. Pollicott**

Affiliation:
Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Email:
mp@ma.man.ac.uk

**C. P. Walkden**

Affiliation:
Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Email:
cwalkden@ma.man.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-01-02708-8

Received by editor(s):
January 31, 1999

Received by editor(s) in revised form:
April 12, 2000

Published electronically:
March 12, 2001

Article copyright:
© Copyright 2001
American Mathematical Society