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LIVŠIC THEOREMS FOR CONNECTED LIE GROUPS

M. POLLICOTT AND C. P. WALKDEN

Abstract. Let φ be a hyperbolic diffeomorphism on a basic set Λ and let
G be a connected Lie group. Let f : Λ → G be Hölder. Assuming that f
satisfies a natural partial hyperbolicity assumption, we show that if u : Λ→ G
is a measurable solution to f = uφ · u−1 a.e., then u must in fact be Hölder.
Under an additional centre bunching condition on f , we show that if f assigns
‘weight’ equal to the identity to each periodic orbit of φ, then f = uφ ·u−1 for
some Hölder u. These results extend well-known theorems due to Livšic when
G is compact or abelian.

1. Introduction

Let φ be a C1 diffeomorphism of a compact Riemannian manifold M . If we
can restrict φ to a (locally maximal) hyperbolic set Λ, then we call φ : Λ → Λ a
hyperbolic map. A familiar example is a (transitive) Anosov diffeomorphism, in this
case Λ = M . More generally, an Axiom A diffeomorphism restricted to a basic set
in the non-wandering set is hyperbolic. We give a complete definition in §2.

Let f : Λ → R be Hölder. It is often important to determine when f is a
coboundary, i.e. f = uφ − u for some Hölder u : Λ → R. This was first studied by
Livšic [L1, L2] and, in more general circumstances, has been the subject of several
recent papers [NP, NT, PP2, P, Sc, W1, W2].

Let m be the Gibbs measure corresponding to a Hölder continuous function (see
§2). In [L2], Livšic showed that, for any Hölder f : Λ → R, a measurable solution
u : Λ → R to the coboundary equation f = uφ − u a.e. has a Hölder continuous
version, i.e. u is necessarily equal a.e. to a Hölder function u′ for which f = u′φ−u′
everywhere.

It is natural to try to generalise this result by replacing R with an arbitrary
connected Lie group G. More specifically, we ask for which connected Lie groups
and Hölder f does the following property hold:
Property (R) (Regularity). If f : Λ → G is Hölder and u is a measurable
solution to the coboundary equation

f = uφ · u−1 a.e.,(1)

then u has a Hölder continuous version.
Livšic [L2] proved that Property (R) holds for the case G = R. In fact, the

proof given there works for any connected Lie group with a bi-invariant metric.
(Moreover, for the more general equation f(x) = u(φx)g(x)u(x)−1 and compact G,
the analogue of Property (R) was proved in [PP2]. More generally, Schmidt showed
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that the analogue of Property (R) holds when f and g satisfy a notion of ‘bounded
distortion’ [Sc]; see §9.) One of our aims in this note is to extend Property (R) to
a larger class of Hölder functions f .

In order to state our main theorems, we need to make some definitions.
The hyperbolicity of φ|Λ can be characterised in terms of the Mather spectrum

of φ. Let X (Λ) denote the Banach space of continuous vector fields on Λ. Define
φ∗ : X (Λ)→ X (Λ) by (φ∗v)(x) = dφ(v(φ−1x)). The Mather spectrum spec(φ) of φ
is the spectrum of φ∗ acting on the complexification of X (Λ).

Let G be a connected Lie group with Lie algebra L(G). Recall that the adjoint
map Ad : G→ Aut(L(G)) is defined so that Ad(g) is the derivative of conjugation
by g. We introduce the following:
Hypothesis (PH) (Partial Hyperbolicity). Let φ : Λ → Λ be hyperbolic
with Mather spectrum contained in the annuli {z | 0 < |z| < λs}, {z | λu <
|z| < ∞}, for some λs < 1 < λu. We say that a Hölder continuous f : Λ → G
satisfies Hypothesis (PH) if λs < µs ≤ 1 ≤ µu < λu where

µs = lim
n→∞

(
sup
x∈Λ
‖Ad(f(φn−1x) · · · f(φx)f(x))‖

)1/n

,

µu = lim
n→∞

(
sup
x∈Λ
‖Ad(f(φn−1x) · · · f(φx)f(x))−1‖

)−1/n

.

For example, if G is compact, nilpotent or soluble of type R, then both of the above
limits are equal to 1. If f satisfies the notion of bounded distortion as defined in
[Sc], then µs = 1 = µu.

The terminology is motivated by the study of partially hyperbolic dynamics.
If φ is a C2 Anosov diffeomorphism and f : Λ → G is a C2 function satisfying
Hypothesis (PH), then the skew product (x, yΓ) 7→ (φ(x), f(x)yΓ) with a compact
homogeneous space G/Γ as fibre is partially hyperbolic in the sense of [BP].

For θ ∈ (0, 1) let

Cθ(Λ, G) = {f : Λ→ G | sup
x 6=x′

ρ(f(x), f(x′))/d(x, x′)θ <∞}

denote the space of Hölder functions Λ→ G with Hölder exponent θ. We shall be
interested in Hölder functions with a sufficiently large Hölder exponent. Define

θPH = max{logµs/ logλs, logλu/ logµu}
and observe that if f satisfies Hypothesis (PH), then θPH < 1.

In this paper we shall establish the following.

Theorem A. Let φ : Λ→ Λ be a hyperbolic diffeomorphism equipped with a Hölder
equilibrium state. Let G be a connected Lie group. Suppose f ∈ Cθ(Λ, G), θ > θPH,
satisfies Hypothesis (PH). Then Property (R) holds.

It is clear that there are obstructions to f : Λ→ G being a coboundary, namely
that f must assign ‘weight’ equal to the identity to each periodic point of φ. More
specifically, if φnx = x, then fn(x) = f(φn−1x) · · · f(x) = u(φnx) · u(x)−1 = e,
the group identity. In [L1], Livšic proved the converse of this observation when G
admits a bi-invariant metric: if f is Hölder and fn(x) = e whenever φnx = x, then
f = uφ ·u−1 for some Hölder u. We can ask for which class of connected Lie groups
and Hölder functions does the following property hold:
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Property (PO) (Periodic Obstructions). If f : Λ→ G is Hölder and fn(x) =
e, the group identity, whenever φnx = x, then there exists a Hölder solution
u : Λ→ G to the coboundary equation f = uφ · u−1.

We shall need the following hypothesis:
Hypothesis (CB) (Centre Bunching). Let λs, λu, µs, µu be as above. We say
that a Hölder continuous function f : Λ→ G satisfies Hypothesis (CB) if it satisfies
Hypothesis (PH) and, in addition, λs < µ−1

u and µ−1
s < λu.

This terminology is also motivated by the study of partially hyperbolic dynamics.
Usually, centre bunching is interpreted to mean that µsµu is close to 1. Clearly, if
µsµu is close to 1, then Hypothesis (CB) holds.

We again need the Hölder exponent of f to be sufficiently large. Define

θCB = max{θPH, logµ−1
s / logλu, logµu/ logλ−1

s }
and observe that Hypothesis (CB) implies θCB < 1.

We prove the following:

Theorem B. Let φ : Λ → Λ be a hyperbolic diffeomorphism and let G be a con-
nected Lie group. Suppose f ∈ Cθ(Λ, G), θ > θCB, satisfies Hypothesis (CB). Then
Property (PO) holds.

Observe that the hypotheses of Theorem B are more restrictive than the hy-
potheses of Theorem A,

Livšic [L1] proved that Property (PO) holds when G admits a bi-invariant metric.
Property (PO) is discussed for the more general equation f(x) = u(φx)g(x)u(x)−1

in [P] (in the compact case) and in [Sc] (when f, g satisfy a ‘bounded distortion’
condition).

We shall study Properties (PO) and (R) by looking separately at soluble and
non-soluble Lie groups. Indeed, we shall see that Hypotheses (PH) and (CB) are
not needed when G is soluble (see §3).

Recall that the radical R = RadG of a connected Lie group G is the largest
connected normal soluble Lie subgroup of G and let πR : G → G/R denote the
quotient map. The Lie group G/R is semi-simple. We can weaken the hypotheses
of Theorems A and B by only assuming that πRf : Λ → G/R satisfy Hypotheses
(PH) and (CB), respectively. These results are stated below as Theorems 7.2, 7.3.

We also prove analogues of the above results for shifts of finite type (Theorems
7.4, 7.5) and for hyperbolic flows (Theorems 8.1, 8.2).

This note is organised as follows. In §2 we discuss some background on hyperbolic
dynamics and, in particular, how to model them by shifts of finite type. In §3 we
begin our analysis in the technically simpler case of a soluble Lie group and a shift
of finite type. Following some technical results in §4, we prove Theorem A (in §5)
and Theorem B (in §6). In §7 we prove Theorems 7.2 and 7.3, the strongest versions
of our results.
Acknowledgements. We would like to thank Matt Nicol and Richard Sharp for
useful conversations. MP was partially supported by the Leverhulme Trust and
CPW was supported by the EPSRC.

2. Hyperbolic diffeomorphisms and symbolic dynamics

We say that a C1 diffeomorphism φ on a compact manifold M restricted to a
φ-invariant subset Λ is hyperbolic if spec(φ) is contained in the disjoint union of
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two annuli {z | 0 < |z| < λs} ∪ {z | λu < |z| <∞} for some 0 < λs < 1 < λu <∞
and, in addition, there exists a dense orbit, the periodic points in Λ are dense in
Λ and Λ is locally maximal, i.e. Λ =

⋂∞
n=−∞ φ

−nU for some open neighbourhood
U ⊃ Λ. Examples of hyperbolic maps include (transitive) Anosov diffeomorphisms
and Axiom A diffeomorphisms restricted to a basic set.

Let g : Λ → R be Hölder. Consider the quantity P (g) = supµ{hµ(φ) +
∫
g dµ}

as µ ranges over all φ-invariant probabilities. We call P (g) the pressure of g. This
supremum is achieved by a unique invariant measure m [B], which we call the
(Hölder) equilibrium state or Gibbs measure corresponding to g.

Let φ be hyperbolic and let d be a metric on Λ. We define the stable manifold
W s(x) through x ∈ Λ to be

W s(x) = {x′ ∈M | d(φnx, φnx′)→ 0 as n→∞}.

These are C1 immersed submanifolds and define a Hölder continuous lamination of
Λ. Similarly, we can define the unstable manifold Wu(x):

Wu(x) = {x′ ∈M | d(φ−nx, φ−nx′)→ 0 as n→∞}.
For ε > 0 sufficiently small, we define the local stable and local unstable manifolds
by

W s
ε (x) = {x′ ∈M | d(φnx, φnx′) ≤ ε for all n ≥ 0}

and

Wu
ε (x) = {x′ ∈M | d(φ−nx, φ−nx′) ≤ ε for all n ≥ 0};

these are subsets of W s(x),Wu(x), respectively. If x and y are sufficiently close,
then the set Wu

ε (x) ∩W s
ε (y) consists of a single point and this point lies in Λ. We

denote this point by 〈x, y〉.
We have the following characterisation of stable manifolds ([KH], for example):

y ∈ W s(x) precisely when d(φnx, φny) ≤ Cλns d(x, y), for some constant C > 0
independent of n. If y ∈W s

ε (x), then the constant can be chosen independently of
x, y. A similar criterion exists for unstable manifolds.

Let x ∈ Λ. We define the homoclinic set W (x) through x to be

W (x) = W s(x) ∩Wu(x) = {x′ ∈M | d(φnx, φnx′)→ 0 as |n| → ∞}.

Then for each x, W (x) ∩ Λ is dense in Λ [B].
We shall also need the following well-known result.

Theorem 2.1 (Anosov’s closing lemma [A]). There exists δ > 0 such that if x ∈ Λ
satisfies d(φnx, x) < δ, then there exists a periodic point w = φnw ∈ Λ such that,
for j = 0, . . . , n− 1, we have

d(φjx, φjw) ≤ C(max{λs, λ−1
u })min{j,n−j}d(φnx, x),

for some constant C independent of x.

2.1. Symbolic dynamics for hyperbolic diffeomorphisms. Let A be a k × k
a periodic matrix with entries from {0, 1}. We define the space

Σ = {x = (xn)∞n=−∞ | Axnxn+1 = 1 for each n ∈ Z}.

For each θ ∈ (0, 1) we define a metric dθ by dθ(x, y) = θn(x,y) where n(x, y) =
sup{n | xi = yi for all |i| ≤ n} if x 6= y. If f : Σ → Y for some metric space Y is
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Lipschitz continuous with respect to dθ, then we shall abuse terminology and say
that f is Hölder of exponent θ. Denote the space of such functions by Fθ(Σ, Y ).

Define the shift map σ : Σ → Σ by (σx)n = xn+1. The map σ is a homeomor-
phism of the compact zero-dimensional space Σ. We call σ : Σ→ Σ a shift of finite
type.

Let g : Σ → R be Hölder and consider the quantity hµ(σ) +
∫
g dµ as µ ranges

over all σ-invariant probability measures. This is maximised by a unique σ-invariant
measure [B] which we call the equilibrium state of g and denoted by m. We call m
a Hölder equilibrium state.

By a slight abuse of notation, we write W s(x) = {y ∈ Σ | yi = xi for all
sufficiently large i} and W s

ε (x) = {y ∈ Σ | yi = xi for all i ≥ 0} and refer to these
as the stable and local stable manifolds through x. Similarly we can define Wu(x)
and Wu

ε (x).
A hyperbolic diffeomorphism can be represented as a shift of finite type via a

Markov partition, and this is the key to proving our main results.

Proposition 2.2 ([B]). Let φ : Λ → Λ by hyperbolic. Then there exists a shift of
finite type σ : Σ→ Σ and a Hölder continuous map π : Σ→ Λ such that

1. πσ = φπ,
2. if m is a Hölder equilibrium state for φ, then m = π∗m̃ for some Hölder

equilibrium state m̃ for σ,
3. π is one-to-one a.e. for any Hölder equilibrium state.

2.2. Local product structure of equilibrium states. Let φ be hyperbolic. If ε
is sufficiently small and x, x′ ∈ Λ are sufficiently close, then we have the holonomy
map ρx,x′ : Wu

ε (x) → Wu
ε (x′) defined by sliding along the local stable manifolds.

That is, ρx,x′(y) is the unique point contained in Wu
ε (x′) ∩W s

ε (y). We denote this
point by 〈x′, y〉.

For a shift of finite type, this holonomy map takes a particularly simple form. If
x, y ∈ Σ are sufficiently close so that x0 = y0, then we define the point 〈x, y〉 ∈ Λ
by (〈x, y〉)n = xn for n ≤ 0 and (〈x, y〉)n = yn for n ≥ 0. The holonomy map
ρx,x′ : Wu

ε (x)→Wu
ε (x′) is then given by ρx,x′(y) = 〈x′, y〉.

We shall prove Theorem A by first proving the existence of a Hölder solution
along stable and unstable manifolds. To do this, we need to be able to interpret (1)
on stable and unstable manifolds. That this is possible follows from the following
natural result. Recall that two measures are equivalent if they have the same sets
of measure zero. To show two measures are equivalent it is sufficient to show that
their Radon-Nikodym derivative is bounded away from zero and infinity.

Proposition 2.3. Let m be a Hölder equilibrium state for φ corresponding to the
function g : Λ→ R. Then there exists a family of measures {mu

x} with mu
x supported

on Wu(x) such that
1. φ∗mu

x and mu
φx are equivalent; indeed, dφ∗mu

x = eg(φx)−P (g)dmu
φx,

2. For each x, x′ sufficiently close, ρ∗x,x′m
u
x and mu

x′ are equivalent; indeed,
dρ∗x,x′m

u
x = eωx,x′(·)dmu

x′ where

ωx,x′(y) =
∞∑
j=0

g(φj〈x, y〉) − g(φj〈x′, y〉).

There is a family {ms
x} of measures supported on W s(x) satisfying similar proper-

ties.
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The measure m is locally equivalent to the product ms
x ×mu

x.

In other words, the stable and unstable laminations are absolutely continuous
with respect to the measures on stable and unstable manifolds induced from the
Gibbs measure. We shall use Proposition 2.3 in the following way. If N ⊂ Λ has
m-measure zero, then mu

x(N ∩Wu
ε (x)) = 0 and ms

x(N ∩ W s
ε (x)) = 0 for m-a.e.

x ∈ Λ. Conversely, if mu
x(N ∩ Wu

ε (x)) = 0 and ms
x(N ∩W s

ε (x)) = 0 for m-a.e.
x ∈ Λ, then m(N) = 0.

It is hard to locate a proof of Proposition 2.3 in the literature. In the more
familiar case when m is the measure of maximal entropy (the equilibrium state
corresponding to g = 0), then Proposition 2.3 was proved in [Si] for Anosov systems
and [RS] for Axiom A diffeomorphisms. For Axiom A flows, the result for an
arbitrary Hölder equilibrium state was proved by Haydn [Hy]. For completeness we
give a sketch of the proof, modelled on [RS], as an appendix (§10).

3. Shifts of finite type and soluble Lie groups

For shifts of finite type, Property (R) takes the form:
Property (R′). If f : Σ → G is Hölder and u is a measurable solution to the
coboundary equation f = uσ · u−1 a.e., then u has a Hölder continuous version.
Similarly we have the analogue of Property (PO):
Property (PO′). If f : Σ→ G is Hölder and fn(x) = e whenever σnx = x, then
f = uσ · u−1 for a Hölder continuous u.

3.1. Lifting solutions. The following result will be used several times in the se-
quel.

Proposition 3.1. Suppose G is a connected Lie group and H is a normal subgroup.
If Property (R′) holds for both G/H and H, then Property (R′) holds for G.

Proof. Denote by π the quotient homomorphism G → G/H . Applying π to the
coboundary equation (1) gives the G/H-valued coboundary equation

π(f) = π(u)σ · π(u−1) = π(u)σ · π(u)−1 a.e.

As Property (R′) holds for G/H , we can find a Hölder function v : Σ→ G/H such
that π(f) = vσ · v−1 a.e. and v = π(u) a.e.

As Σ is totally disconnected, we can find a Hölder lift of v, i.e. a function w :
Σ→ G such that π(w) = v.

Define f ′ = w−1σ · f ·w. Then f ′ is Hölder; moreover π(f ′) = v−1σ ·π(f) · v = e
so that f ′ is H-valued. It is also clear that w−1 · v is a measurable function taking
values in H a.e. Hence f ′ = (w−1u)σ · (w−1u)−1 is a coboundary equation taking
values in H . As Property (R′) holds for H , w−1u is equal a.e. to a Hölder function.
Hence u is equal a.e. to a Hölder function.

We have the following result for Property (PO′).

Proposition 3.2. Suppose G is a connected Lie group and H is a normal subgroup.
If Property (PO ′) holds for both G/H and H, then Property (PO ′) holds for G.

Proof. The proof of Proposition 3.1 goes through, with Property (PO′) replacing
Property (R′) at each occurrence.
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3.2. Property (PO′) and Property (R′) for soluble Lie groups. The results
of §3.1 allow us to prove the analogues of Theorems A and B for shifts of finite type
and G a connected soluble Lie group. Recall that a connected Lie group G is said
to be soluble if there are closed subgroups G = G0 > G1 > . . . > Gn = {e} such
that Gi/Gi+1 is abelian, 0 ≤ i ≤ n− 1.

Proposition 3.3. Let σ be a shift of finite type. If G is a connected soluble Lie
group, then both Property (PO ′) and Property (R′) hold.

Proof. The proofs of the two cases are similar, so we only prove that Property (R′)
holds.

We use induction on the dimension of G. If dimG = 1, then G is abelian and
Property (R′) is known to hold.

Suppose dimG = n > 1. If G is abelian, then we are done. If not, then
there exists a connected normal soluble subgroup H such that G/H is abelian and
dimH < dimG. By the inductive hypothesis, Property (R′) holds for both H and
G/H . By Proposition 3.1, Property (R′) holds for G.

4. Invariant graphs over stable manifolds

The following key result describes families of invariant graphs over stable and
unstable manifolds. Define the skew product

φf : Λ×G→ Λ×G
(x, y) 7→ (φx, f(x)y).

Recall that we have defined fn(x) = f(φn−1x) · · · f(x).

Theorem 4.1. Let φ : Λ → Λ be hyperbolic. Let G be a connected Lie group
and suppose f : Λ→ G satisfies Hypothesis (PH). Suppose f ∈ Cθ(Λ, G) for some
θ > θPH. Then for each x ∈ Λ, there exists a Hölder function γsx(·) : W s(x)∩Λ → G
such that

1. γsx(x) = e,
2. on local stable manifolds, the Hölder constant of γsx(·) : W s

ε (x) ∩ Λ → G is
independent of x,

3. for x′ ∈W s(x), γsx(x′) is defined by

γsx(x′) = lim
n→∞

fn(x′)−1fn(x),

4. if W s(x, y) denotes the graph of γsx(·)y, y ∈ G, then

φf (W s(x, y)) = W s(φf (x, y)).

Similarly, we may define γux on Wu(x) ∩ Λ by

γux (x′) = lim
n→∞

f−n(x′)−1f−n(x)

where f−n(x) = fn(φ−nx)−1.

Proof. Let G be a connected Lie group. For g ∈ G, let TgG denote the tangent
space at g and identify TeG with L(G), the Lie algebra of G. Let lg, rg denote
left, right multiplication by g, respectively. Let dhlg, dhrg denote the derivatives
of lg, rg at h, respectively. The adjoint map Ad : G → Aut (L(G)) is defined by
Ad(g)X = dgrg−1delgX for X ∈ TeG, that is, Ad(g) is the derivative of conjugation
by g.
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Let ‖ · ‖e be a norm on TeG. Define a Finsler norm by ‖X‖g = ‖dgrg−1X‖e for
X ∈ TgG. This defines a metric ρ on G and it is easy to see that ρ is right-invariant:
ρ(gh, g′h) = ρ(g, g′) for all g, g′, h ∈ G. Note that for X ∈ TgG we have

‖dglhX‖hg = ‖dhgr(hg)−1dglhX‖e
= ‖dhrh−1delhdgrg−1X‖e
= ‖Ad(h)dgrg−1X‖e

so that ρ(hg, hg′) ≤ ‖Ad(h)‖ρ(g, g′).
Recall from §1 the definition of µs. By the assumption on θ, choose δ > 0 such

that λθs < µs − δ. Then

sup
x′
‖Adfn(x′)−1‖ ≤ (µs − δ)−n(2)

provided n is sufficiently large.
For each x ∈ Λ and x′ ∈ W s(x) ∩ Λ, define

γs,nx (x′) = fn(x′)−1fn(x).

We claim that γsx(x′) = limn→∞ γ
s,n
x (x′) exists.

To see this, note that by the right invariance of ρ we have for large n

ρ(γs,n+1
x (x′), γs,nx (x′))

= ρ(fn(x′)−1f(φnx′)−1f(φnx)fn(x), fn(x′)−1f(φnx)−1f(φnx)fn(x))
≤ ‖Ad(fn(x′)−1)‖ρ(f(φnx′)−1, f(φnx)−1)

≤ C((µs − δ)−1λθs)
n

where the constant is independent of n. Hence γs,nx (x′) is Cauchy and therefore
converges.

We now show that γs,nx (x′) : W s
ε (x) ∩ Λ → G is uniformly Hölder in x. Let

x′, x′′ ∈ W s
ε (x) ∩ Λ. Then

ρ(γs,nx (x′), γs,nx (x′′))
= ρ(fn(x′)−1, fn(x′′)−1)

≤
n−1∑
j=0

ρ(f j(x′)−1f(φjx′)−1fn−j−1(φj+1x′′)−1,

f j(x′)−1f(φjx′′)−1fn−j−1(φj+1x′′)−1)

≤
n−1∑
j=0

‖Ad(f j(x′)−1)‖ρ(f(φjx′)−1, f(φjx′′)−1)

≤
n−1∑
j=0

‖Ad(f j(x′)−1)‖Cλθjs d(x′, x′′)θ.

As ‖Ad(f j(x′)−1)‖ ≤ C(f, δ)(µs − δ)−j for all j ∈ N, we may let n→∞ to obtain
ρ(γsx(x′), γsx(x′′)) ≤ Cd(x′, x′′)θ, for some constant C > 0, independent of x, x′.

The proof of 4 is similar.

5. Property (R) and partial hyperbolicity

We can now prove Property (R) for Hölder functions f satisfying the partial
hyperbolicity hypothesis. We restate Theorem A.
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Theorem 5.1. Let φ : Λ → Λ be hyperbolic, equipped with a Hölder equilibrium
state m. Let G be a connected Lie group. Suppose f : Λ → G satisfies Hypothesis
(PH) and f ∈ Cθ(Λ, G) for some θ > θPH. Then Property (R) holds.

Proof. Suppose f satisfies the hypotheses in the statement of the theorem, and that
f = uφ · u−1 a.e. for some measurable u.

Let X ⊂ Λ denote the full measure set on which f(x) = u(φx)u(x)−1. By
considering the full measure set

⋂
n∈Z φ

−nX , there is no loss in assuming that X is
φ-invariant.

By Proposition 2.3, we can write

fn(x′)−1fn(x) = u(x′)u(φnx′)−1u(φnx)u(x)−1(3)

for m-a.e. x ∈ Λ and ms
x-a.e. x′ ∈W s(x).

By Lusin’s theorem ([Hl, §55], for example), choose a set U ⊂ X with µ(U) > 1/2
such that u|U is uniformly continuous.

As µ(U) > 1/2, by the Ergodic Theorem for almost all x, x′ there is a positive
density of times ni →∞ such that φnix, φnix′ ∈ U . In particular, if we let n→∞
through this subsequence in (3) we see that

lim
ni→∞

fni(x′)−1fni(x) = u(x′)u(x)−1

for m-a.e. x ∈ Λ and ms
x-a.e. x′ ∈W s(x).

Hence u(x′) = γsx(x′)u(x) ms
x-a.e. so that u is equal almost everywhere to a

uniformly Hölder continuous function along almost every local stable manifold.
Similarly, u is equal almost everywhere to a uniformly Hölder continuous function
along almost every local unstable manifold.

By Theorem 4.1 and Proposition 19.1.1 of [KH], this proves the result.

6. Property (PO) and centre bunching

We now prove Property (PO) for Hölder functions f satisfying the centre bunch-
ing hypothesis. We restate Theorem B.

Theorem 6.1. Let φ : Λ → Λ be hyperbolic and let G be a connected Lie group.
Suppose f : Λ→ G satisfies Hypothesis (CB) and f ∈ Cθ(Λ, G) for some θ > θCB.
Then Property (PO) holds.

We give the proof as a series of lemmas. Throughout, we assume that f : Λ→ G
is such that fn(x) = e whenever φnx = x. For convenience, we assume that
z = φz is a fixed point of φ so that (in the notation of the proof of Theorem 4.1)
γs,nz (x) = fn(x)−1, γu,nz (x) = f−n(x)−1 = fn(φ−nx) (as fn(z) = e for all n).

Lemma 6.2. For x ∈W (z), the homoclinic set through z, we have γsz(x) = γuz (x).

Proof. Let ν = max{λs, λ−1
u }. Let x ∈W (z) and choose n > 0 sufficiently large so

that φ−nx, φnx are close enough to apply Theorem 2.1. Hence we have a periodic
point w = φ2nw such that

d(φjx, φjw) ≤ Cνn−jd(φ−nx, φnx),

d(φ−jx, φ−jw) ≤ Cνn−jd(φ−nx, φnx),
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for j = 0, . . . , n. By Hypothesis (CB) and the assumption on θ, we can choose
δ > 0 such that (µu + δ)νθ < 1. We estimate

ρ(γs,nz (x)−1, fn(w))
= ρ(f(φn−1x) · · · f(x), f(φn−1w) · · · f(w))

≤
n−1∑
j=0

ρ(fn−j−1(φj+1x)f(φjx)f j(w), fn−j−1(φj+1x)f(φjw)f j(w))

≤
n−1∑
j=0

‖Ad(fn−j−1(φj+1x))‖ρ(f(φjx), f(φjw))

≤ C

n−1∑
j=0

(µu + δ)n−jνθ(n−j)d(φ−nx, φnx)θ

≤ Cd(φ−nx, φnx)θ

for some constants C independent of n and x. Similarly, we have

ρ(γu,nz (x)−1, fn(φ−nw)−1) ≤ Cd(φ−nx, φnx)θ .

As φ2nw = w, we have f2n(w) = e so that fn(φ−nw)−1 = fn(w). Hence,

ρ(γs,nz (x)−1, γu,nz (x)−1) ≤ Cd(φ−nx, φnx)θ .

The lemma follows by letting n→∞.

Define u : W (z)→ G by u(x) = γsz(x) = γuz (x). Then

u(φx) = lim
n→∞

fn(φx)−1

= lim
n→∞

f(x)fn+1(x)−1

= f(x)u(x)

so that u is a solution to the coboundary equation f = uφ · u−1 on the dense set
W (z). We show that u extends to a Hölder function defined on Λ. It is sufficient
to show that u is uniformly Hölder on W (z).

Lemma 6.3. The function u : W (z)→ G is uniformly Hölder.

Proof. Let x, y ∈ W (z) be sufficiently close so that w = 〈y, x〉 is defined. Clearly
w ∈ W (z). Observe that

ρ(γsz(x), γsz(w))
= lim

n→∞
ρ(f(x)−1 · · · f(φn−1x)−1, f(w)−1 · · · f(φn−1w)−1)

≤ lim
n→∞

n−1∑
j=0

ρ(f j(x)−1f(φjx)−1fn−j−1(φj+1w)−1,

f j(x)−1f(φjw)−1fn−j−1(φj+1w)−1)

≤ lim
n→∞

n−1∑
j=0

‖Ad(f j(x)−1)‖ρ(f(φjx)−1, f(φjw)−1)

≤ lim
n→∞

C

n−1∑
j=0

((µs − δ)−1λθ)jd(x,w)θ ,
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for some constant C independent of x,w. It follows that

ρ(γsz(x), γsz(w)) ≤ Cd(x,w)θ .

Similarly, ρ(γuz (y), γuz (w)) ≤ Cd(y, w)θ . Hence

ρ(u(x), u(y)) ≤ C(d(x,w)θ + d(y, w)θ) ≤ Cd(x, y)θ.

This proves Theorem 6.1 under the additional hypothesis that there exists a
fixed point z. If no such point exists, then repeat the above construction with
a periodic p point, taking the limits through multiples of p. This gives a Hölder
solution u to fp = uφp · u−1. Using a period q point, we have a Hölder solution
v to f q = vφq · v−1. By the transitivity of φpq , we may take v = u. Choose
p, q to be coprime. Then for suitable integers k, l we have f(x) = fkp+lq(x) =
fkp(φlqx)f lq(x) = u(φkp+lqx)u(x)−1 = u(φx)u(x)−1.

7. Proofs of main results

We show how to combine the results of §§3, 5, 6 to obtain a large class of functions
for which Property (R) and Property (PO) hold.

The following was used in [NP] for linear Lie groups. The proof closely follows
Livšic’s original argument and we include it for completeness. This result applies
without requiring the partial hyperbolicity assumption.

Proposition 7.1. Let G be a connected Lie group and φ : Λ → Λ a hyperbolic
diffeomorphism equipped with a Hölder equilibrium state. If f : Λ → G is Hölder
and satisfies f = uφ · u−1 a.e. where both u and u−1 are essentially bounded, then
u has a Hölder continuous version.

Proof. Let ρ denote a right-invariant metric on G.
Suppose u, u−1 are bounded on a set of full measure X . By replacing X by⋂
n∈Z φ

−nX there is no loss in assuming that X is φ-invariant. Note that {u(x),
u(x)−1 | x ∈ X} has compact closure. Hence {fn(x) | n ∈ Z, x ∈ Λ} has compact
closure. In particular,

D = sup
x∈X,n∈Z

{‖Ad(fn(x))‖} <∞

and we have ρ(fn(x)g, fn(x)g′) ≤ Dρ(g, g′) for all n ∈ Z, x ∈ Λ and g, g′ ∈ G.
By Lusin’s theorem, choose a set U ⊂ X of measure µ(U) > 1/2 such that

u, u−1|U are uniformly continuous.
Let x ∈ X be a point at which f(x) = u(φx)u(x)−1. By Proposition 2.3,

f(y) = u(φy)u(y)−1 for almost all y ∈ Wu(x) with respect to the induced measure
on Wu(x). Let y ∈ Wu

ε (x) be such a point and let xn = φ−n(x), yn = φ−n(y).
Then d(xn, yn) ≤ Cλ−nu d(x, y).

We have u(x) = fn(xn)u(xn). Hence,

ρ(u(x), u(y)) = ρ(fn(xn)u(xn), fn(yn)u(yn))

≤ ρ(fn(xn), fn(yn)) +Dρ(u(xn), u(yn)).(4)
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Now

ρ(fn(xn), fn(yn))

≤
n−1∑
j=0

ρ(fn−j−1(φj+1xn)f(φjxn)f j(xn), fn−j−1(φj+1xn)f(φjyn)f j(yn))

≤ D

n−1∑
j=0

ρ(f(φjxn), f(φjyn))

≤ Cd(x, y)θ,

where θ is the Hölder exponent of f and C is a constant, independent of x, y.
As µ(U) > 1/2, we can find for almost all x, y, a sequence ni → ∞ such that

(xni , yni) ∈ U × U . By Proposition 2.3, we may assume x, y belong to the same
unstable manifold. As u is uniformly continuous on U , we have ρ(u(xni), u(yni))→
0 as ni →∞.

Letting n→∞ through a subsequence in (4) we have

ρ(u(x), u(y)) ≤ Cd(x, y)θ

for x, y belonging to the same local unstable manifold, where C is a constant,
independent of x, y. Hence u has a uniformly Hölder version on almost all local
unstable manifolds.

Similarly u has a uniformly Hölder version on almost all local stable manifolds.
By [KH, Proposition 19.1.1], this proves the result.

We can use Proposition 2.2 to prove that Property (R) holds for an arbitrary
connected Lie group and a large class of functions f . Recall that R denotes the
radical of G, namely the largest connected normal soluble Lie subgroup.

Theorem 7.2. Let φ : Λ→ Λ be a hyperbolic diffeomorphism equipped with a Höld-
er equilibrium state. Let G be a connected Lie group. Let f : Λ→ G be Hölder and
suppose πRf : Λ → G/R ∈ Cθ(Λ, G/H) satisfies Hypothesis (PH) and θ > θPH.
Then Property (R) holds.

Proof. Suppose f = uφ · u−1 a.e. for some measurable u. Let πR : G → G/R be
the quotient homomorphism. Then πR(f) = πR(uφ) · πR(u)−1 a.e. and this is a
coboundary equation satisfying the hypotheses of Theorem 5.1. Hence πR(u) = v
a.e. for some Hölder v : Λ→ G/R.

Let π : Σ → Λ be as in Proposition 2.2. Then fπ = (uπ)σ · (uπ)−1 a.e. with
respect to a Hölder equilibrium state for σ : Σ → Σ. Moreover, πR(uπ) = vπ a.e.
and vπ : Σ → G/R is Hölder. Hence Property (R′) holds for fπ and G/R. By
Proposition 3.3, Property (R′) holds forR. Hence by Proposition 3.1, fπ = u′σ·u′−1

everywhere for some Hölder u′ : Σ→ G such that u′ = uπ a.e.
As π is one-to-one a.e., it follows from u′ = uπ a.e. and the continuity of u′

that u is essentially bounded. By Proposition 7.1, u has a Hölder version, and the
Hölder exponent is the same as that of f .

Essentially the same proof, using Proposition 3.2, gives the following:

Theorem 7.3. Let φ : Λ → Λ be a hyperbolic diffeomorphism and let G be a
connected Lie group. Let f : Λ → G be Hölder and suppose πRf : Λ → G/R ∈
Cθ(Λ, G/H) satisfies Hypothesis (CB) and θ > θCB. Then Property (PO) holds.
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We can also prove analogues of Theorems 7.2, 7.3 for shifts of finite type. Recall
from §2 that with respect to the metric dθ on Σ, σ contracts W s(x) by θ and
expands Wu(x) by θ−1. The proofs in §§5,6 go through provided f ∈ Fθ(Σ, G) is
such that θ < θcrit = min{µs, µ−1

u }. Hence

Theorem 7.4. Let σ : Σ → Σ be a shift of finite type equipped with a Hölder
equilibrium state. Let G be a connected Lie group. If f ∈ Fθ(Σ, G) and θ < θcrit,
then Property (R) holds.

Theorem 7.5. Let σ : Σ→ Σ be a shift of finite type and let G be a connected Lie
group. If f ∈ Fθ(Σ, G) and θ < θcrit, then Property (PO) holds.

8. Flows

We briefly explain how the results in this paper carry over to the case of contin-
uous time.

A C1 flow φt restricted to an invariant set Λ is said to be hyperbolic if the
Mather spectrum of the time-1 map is contained in {z ∈ C | 0 < |z| < λs} ∪
{z ∈ C | λu < |z| <∞}∪ {z ∈ C | |z| = 1} and the subspace of the tangent bundle
of Λ corresponding to the eigenvalue 1 is one-dimensional and spanned by the vector
field generating the flow (we also assume that the periodic points are dense, there
is a dense orbit and Λ is locally maximal). Equilibrium states for hyperbolic flows
can be defined in a similar way as for diffeomorphisms.

Let G be a connected Lie group. A continuous map F : Λ× R→ G is a cocycle
if F t+s(x) = F t(φsx)Fs(x). A cocycle determines and is determined by the Lie
algebra valued function

f(x) = lim
t→0

1
t

exp−1 F t(x).

We say that F is Hölder or Cr if f is Hölder or Cr, respectively.
Property (R) takes the form:

Property (R) for hyperbolic flows. If F is a Hölder cocycle and u is a mea-
surable solution to the coboundary equation

F t(x) = u(φtx)u(x)−1 a.e.,(5)

then u has a Hölder continuous version.
Hypothesis (PH) in continuous time takes the form:

Hypothesis (PH) for hyperbolic flows. Let φt be a hyperbolic flow and sup-
pose the Mather spectrum of φ1 is contained in the annuli {z | 0 < |z| < λs} ∪ {z |
λu < |z| < ∞} and the unit circle. A cocycle F satisfies Hypothesis (PH) if
λs < µs ≤ 1 ≤ µu < λu where

µs = lim
t→∞

sup
x∈Λ
‖AdF t(x)‖1/t,

µu = lim
t→∞

sup
x∈Λ
‖AdF t(x)−1‖−1/t.

Similarly, we have Property (PO) for hyperbolic flows:
Property (PO) for hyperbolic flows. If F is a Hölder cocycle such that FT (x)
= e whenever φTx = x then F t(x) = u(φtx)u(x)−1 for some Hölder u : Λ→ G.

The centre bunching hypothesis remains the same:
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Hypothesis (CB) for hyperbolic flows. A cocycle F satisfies Hypothesis (CB)
if it satisfies Hypothesis (PH), λs < µ−1

u and µ−1
s < λu.

The analogues of Theorems 7.2, 7.3 are as follows:

Theorem 8.1. Let φt : Λ→ Λ be a hyperbolic flow, equipped with a Hölder equilib-
rium state. Let G be a connected Lie group. Let F be a Hölder cocycle and suppose
πRF is a G/R-valued cocycle satisfying Hypothesis (PH) and the Hölder exponent
of πRF is greater than θPH. Then Property (R) holds.

Theorem 8.2. Let φt : Λ → Λ be a hyperbolic flow and let G be a connected
Lie group. Let F be a Hölder cocycle and suppose πRF is a G/R-valued cocycle
satisfying Hypothesis (CB) and the Hölder exponent of πRF is greater than θCB.
Then Property (R) holds.

The proofs follow the same general arguments as above and we merely sketch
the necessary modifications.

The proofs of Theorem 5.1 and Proposition 7.1 generalise to show that, under
Hypothesis (PH), a solution u to (5) has a Hölder continuous version along almost
every stable and unstable manifold. As u(φtx) = F t(x)u(x) a.e., u has a Hölder
version along orbits. By repeated use of [KH, Proposition 19.1.1], this is sufficient
to conclude that u has a Hölder version.

Consider Property (PO). For hyperbolic flows, it is not in general true that
W (z) is dense for any z ∈ Λ (this is the case if φt is a constant suspension of a
hyperbolic diffeomorphism, for example). However, the cocycle equation F t(x) =
u(φtx)u(x)−1 is invariant under velocity changes and we can always change velocity
φt into a mixing flow. If φt is mixing, then W (z) is dense for each z ∈ Λ. Under
Hypothesis (CB), the proof of Theorem 6.1 generalises when φt is mixing.

The soluble case is slightly more involved. We first consider the case where φt

is a suspension of a shift of finite type, so that Λ = Σ× [0, 1]/(x, 1) ∼ (σx, 0) for a
shift of finite type σ on Σ. As in [W1], we first interpret (5) on a cross-section of
the form Σ × {t0}. As this is zero-dimensional, the lifting arguments in the proof
of Proposition 3.1 work. A continuous solution can then be constructed on Λ, as
in [W1]. Hence the analogue of Property (R′) holds.

For Property (PO) in the soluble case, we again first consider a suspension of
a shift of finite type. By reparametrising time, there is no loss in considering a
constant suspension. In particular, the cross-section Σ × {0} is invariant under σ
and has the same periodic orbits as the suspended flow. This allows us to construct
a continuous solution to the coboundary equation, first on Σ× {0} and then on Λ.
This proves the analogue of Property (PO′).

The two cases can be combined as in §7, using Markov sections in place of Markov
partitions.

9. Concluding remarks

More generally, we could consider the equation

f(x) = u(φx)g(x)u(x)−1 a.e.(6)

where f, g : Λ→ G are Hölder and u is measurable. When the group G is compact
(or, more generally, if f, g satisfy Schmidt’s notion of bounded distortion) it is again
true that u must have a Hölder continuous version [PP2, Sc].
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When G is non-compact, the situation is less clear. When G is nilpotent, measur-
able solutions to (6) must be Hölder; simple modifications to the proofs of Propo-
sition 3.1 and Proposition 3.3 prove this. We shall give an example of a soluble Lie
group for which (6) has a measurable solution, but no continuous solution.

Take G to be the connected soluble linear Lie group

G =
{(

a1 a2

0 1

)
| a1 > 0, a2 ∈ R

}
.

Let

f =
(
f1 f2

0 1

)
, g =

(
g1 g2

0 1

)
, u =

(
u1 u2

0 1

)
.

We shall show that for an appropriate choice of f and g, (6) has a measurable
solution u, but no continuous solution.

Let x0 = φ(x0) be a fixed point. Choose f and g such that
1. f1 = g1;
2. f1(x0) = 1 and f2(x0) 6= g2(x0);
3. for almost all x ∈ Λ,

lim
n→∞

(f1(x)f1(φx) · · · f1(φn−1x))1/n → α < 1

(the limit exists and is constant a.e. by the ergodicity of φ). The first assumption
allows us to take u1 = 1. Equation (6) then reduces to

f2(x) = u2(φx) + g2(x)− f1(x)u2(x) a.e..(7)

If u2 were to have a continuous version, then (7) would hold everywhere. However,
by setting x = x0, this contradicts the second assumption.

It remains to check that (7) admits a measurable solution u2. Let ε > 0 be small.
The set

X = {x ∈ Λ | f1(x)f1(φx) · · · f1(φn−1x) < c(x)(α + ε)n}
has measure one (here c(x) is a constant depending on x, but independent of n).
By replacing X by

⋂
n∈Z φ

−nX we may assume that X is φ-invariant. Define for
each n > 0

Fn(x) = f2(x) + f1(x)f2(φx) + · · ·+ f1(x) · · · f1(φn−1x)f2(φnx).

Then

Fn(x) = Fn−1(x) + f1(x) · · · f1(φn−1x)f2(φnx),(8)

Fn(x) = f2(x) + f1(x)Fn−1(φx).(9)

Fix x ∈ X . From (8) it follows that

|Fn+j(x)− Fn+j−1(x)| < ‖f2‖∞c(x)(α + ε)n+j .

Hence,

|Fn+m(x)− Fn(x)| ≤
m∑
j=1

|Fn+j(x)− Fn+j−1(x)|

≤ c(x)(α + ε)n
∞∑
j=0

(α+ ε)j

≤ C(x)(α + ε)n
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and it follows that, for each x, Fn(x) is Cauchy. Call the limit v(x); this is a
measurable function. Letting n → ∞ in (9) we have f2(x) = v(x) − f1(x)v(φx).
Then u2 = vφ−1 is a measurable solution to (7).

One can also study smooth versions of Property (R): if φ is a smooth (C∞)
Anosov diffeomorphism and f is a smooth function such that f = uφ ·u−1 for some
continuous u, then must u itself be smooth? This, and the related Cr problem, has
been well-studied and we refer to [NT] for details and references.

10. Appendix: Proof of Proposition 2.3

Proposition 2.3 was proved for the equilibrium state corresponding to the func-
tion g = 0 (namely, the measure of maximal entropy) in [RS]. Here we sketch the
modifications needed in their argument to prove Proposition 2.3 for an arbitrary
Hölder equilibrium state.

Let m be the equilibrium state for φ corresponding to g. Then m = π∗m̃ where
π : Σ→ Λ is as in Proposition 2.2 and m̃ is the equilibrium state for σ corresponding
to the Hölder function g̃ = gπ. We first prove the Proposition in the case of a shift
of finite type, and we drop the tildes for simplicity.

Define Σ+ = {x = (xn)∞n=0 | Axnxn+1 = 1 for n ≥ 0} to be the one-sided shift
space, and σ : Σ+ → Σ+ : (σx)n = xn+1 to be the one-sided shift. If x ∈ Σ, then we
can regard Wu

ε (x) as a subspace of Σ+, namely those sequences (yn)∞n=0 for which
y0 = x0.

Let g : Σ → R ∈ Fθ(Σ,R). By subtracting P (g) we may assume that P (g) = 0.
Moreover, we may find vu ∈ F

θ
1
2
(Σ,R) such that

1. gu = g + vu − vuσ ∈ F
θ

1
2

(Σ,R) depends only on future coordinates (i.e.
gu(x) = gu(y) if xi = yi for i ≥ 0), and so can be regarded as a function
gu : Σ+ → R;

2. gu is normalised:
∑

y∈Σ+:σy=x e
gu(y) = 1 for each x ∈ Σ+.

Recall the transfer operator

Lgu : F
θ

1
2
(Σ+,R)→ F

θ
1
2
(Σ+,R) : (Lguw)(x) =

∑
y:σy=x

egu(y)w(y).

Then the spectral radius of Lgu is 1, Lgu1 = 1 and 1 is a simple isolated eigen-
value. The equilibrium state m of g (which is also the equilibrium state of gu) is
characterised by L∗gum = m.

Define the measure mu
x on Wu

ε (x) by (dmu
x/dm)(·) = evu(〈x,·〉), regarding Wu

ε (x)
as a subset of Σ+.

By [PP1, Prop. 3.2] dσ∗mu
x = eg(σ〈x,·〉)dmu

σx and the family of measures have
the claimed scaling properties on unstable manifolds.

One can easily check that (dρ∗x,x′m
u
x/dm

u
x′)(·) = evu(〈x,·〉)−vu(〈x′,·〉). Define gn(x)

= g(x) + · · ·+ g(σn−1x). Then

vu(〈x, ·〉) − vu(〈x′, ·〉)
= gn(〈x, ·〉) − gn(〈x′, ·〉)− gnu(〈x, ·〉) + gnu(〈x′, ·〉)

+vu(σn〈x, ·〉) − vu(〈x′, ·〉).
As gu depends only on future coordinates, the terms involving gu cancel. Letting
n→∞ we see that

ωx,x′(y) = lim
n→∞

gn(〈x, ·〉) − gn(〈x′, ·〉) = vu(〈x, ·〉) − vu(〈x′, ·〉)

is well-defined. Hence the measures mu
x transform as claimed under holonomy.
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Similarly, we can define measures ms
x on W s

ε (x) by regarding W s
ε (x) as a subset

of Σ− = {(xn)0
n=−∞ | Axn−1xn = 1 for n ≤ 0} and repeating the above construction

using σ−1 in place of σ and gs in place of gu, where gs = g+ vs− vsσ depends only
on the ‘past’.

Using the product structure 〈·, ·〉 it is easy to see that

d(ms
x ×mu

x) = evu(〈x,·〉)−vs(〈·,x〉)dm.

Finally, we want to push down the measure ms,u
x from Σ to Λ. Let R = {Ri}

be a Markov partition such that diamRi < ε. Then π : Σ → Λ is given by
π(xn) =

⋂
n∈Z φ

−nRxn . Let x ∈ Λ and suppose x ∈ Rx0 . Choose (xn) ∈ Σ such
that π(xn) = x. We define the measure mu

x on Wu
ε (x) ∩ Rx0 by projecting the

measure mu
(xn) on Wu

ε ((xn)) constructed above. That this is well-defined follows
from well-known properties of Markov partitions and is given in detail in [RS].
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[PP2] W. Parry and M. Pollicott, The Livsic cocycle equation for compact Lie group extensions

of hyperbolic systems, J. London Math. Soc. 56 (1997), 405–416. MR 99d:58109
[RS] D. Ruelle and D. Sullivan, Currents, flows and diffeomorphisms, Topology 14 (1975),

319–327. MR 54:3759
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