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ON THE SHELLABILITY OF THE ORDER COMPLEX
OF THE SUBGROUP LATTICE OF A FINITE GROUP

JOHN SHARESHIAN

Abstract. We show that the order complex of the subgroup lattice of a finite
group G is nonpure shellable if and only if G is solvable. A by-product of the
proof that nonsolvable groups do not have shellable subgroup lattices is the
determination of the homotopy types of the order complexes of the subgroup
lattices of many minimal simple groups.

1. Introduction

We will show that the order complex of the subgroup lattice of a finite group G
is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in
the nonsolvable case involves the determination of the homotopy type of the order
complexes of the subgroup lattices of many minimal simple groups.

We begin with some history and basic definitions. It is assumed that the reader is
familiar with some of the rudiments of algebraic topology and finite group theory.
No distinction will be made between an abstract simplicial complex ∆ and an
arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will
be called facets of ∆.

Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be
ordered σ1, . . . , σn so that for all 1 ≤ i < k ≤ n there exists some 1 ≤ j < k and
x ∈ σk such that σi ∩ σk ⊆ σj ∩ σk = σk \ {x}. The list σ1, . . . , σn is called a
shelling of ∆.

Note that this definition does not require that ∆ be pure. Pure shellable com-
plexes are discussed in [1], and nonpure shellable complexes are introduced in [2].

Definition 1.2. Let P be a partially ordered set. The order complex ∆(P ) is the
simplicial complex whose k-simplices are chains of length k from P .

Note that a chain of length k from a poset P contains k + 1 elements. We will
call P shellable if and only if ∆(P ) is shellable.

Definition 1.3. Let G be a finite group.
(1) L(G) is the lattice of subgroups of G.
(2) L(G) := L(G) \ {1, G}.
(3) l(G) is the length of the longest chain in L(G).
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It follows immediately from Definition 1.1 that L(G) is shellable if and only if
L(G) is shellable. We will call G shellable if and only if L(G) is shellable. As stated
above, we will prove the following theorem.

Theorem 1.4. A finite group G is shellable if and only if G is solvable.

The relation between subgroup lattices and pure shellability is already well-
understood. Note that for any poset P , the order complex ∆(P ) is pure if and
only if P is graded, that is, every maximal chain in P has the same length. In
[10], Iwasawa showed that for a finite group G, L(G) is graded if and only if G is
supersolvable. In [14], Stanley introduced supersolvable lattices, which are lattices
which share some important combinatorial properties with subgroup lattices of
finite supersolvable groups. In [1], Björner showed that supersolvable lattices are
shellable, thereby showing that the three conditions G is supersolvable, ∆(L(G)) is
pure, and ∆(L(G)) is shellable and pure are equivalent.

It follows from Theorem 1.4 and the work of Björner and Wachs in [2] that if
G is solvable then ∆(L(G)) has the homotopy type of a wedge of spheres. The
following stronger result was obtained by Kratzer and Thévenaz in [11].

Theorem 1.5 ([11, Corollaire 4.10]). Let G be a finite solvable group with chief
series 1 = G0 / G1 / . . . / Gr−1 / Gr = G. For 1 ≤ i < r, let mi be the number of
complements to Gi/Gi−1 in G/Gi−1. Then ∆(L(G)) has the homotopy type of a
wedge of m =

∏r−1
i=1 mi spheres of dimension r − 2.

It follows that the only reduced homology group of ∆ = ∆(L(G)) which can be
nontrivial is H̃r−2(∆), which is free of dimension m. In [16], Thévenaz investigates
the linear representation of G on this homology group which is determined by the
action of G on ∆ by conjugation. In doing so, he obtains an even stronger result
than Theorem 1.5. Namely, assume that m > 0 (where m is as in Theorem 1.5),
and fix a chief series 1 = G0 / . . . / Gr = G. Let Γ(G) be the set of all chains
1 = Cr < Cr−1 < . . . < C0 = G such that each Ci is a complement to Gi in G. For
γ ∈ Γ(G), let Sγ be the poset obtained by removing 1 and G from the sublattice of
L(G) generated by all the Gi and all the Ci. Let K(G) =

⋃
γ∈Γ(G) Sγ . Thévenaz

shows (see Theorem 1.4 of [16]) that

• the identity embedding of K(G) into L(G) induces a homotopy equivalence
of order complexes,
• ∆(K(G)) '

∨
γ∈Γ(G) ∆(Sγ), and

• for all γ ∈ Γ(G), ∆(Sγ) has the homotopy type of an (r − 2)-sphere.

So, the spheres in the given wedge are indexed by the chains γ of complements to
the elements of a given chief series. Our proof that ∆(L(G)) is shellable when G is
solvable uses the theory of recursive coatom orderings (see Section 5 of [2]), and we
are unable to obtain the decomposition of Thévenaz or even the numerical result
of Kratzer and Thévenaz as a corollary. However, Thévenaz’ result suggests that
the theory of EL-shellability (again, see section 5 of [2]) might be applied to the
subgroup lattice of a solvable group, as in the following conjecture. As noted in
[16], all chains γ ∈ Γ(G) are maximal chains in L(G).

Conjecture 1.6. Let G be a finite solvable group. Then L(G) admits an EL-
labeling in which the falling maximal chains are exactly the elements of Γ(G).
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2. Homotopy equivalence of order complexes

and properties of shellable complexes

It this section we will review some known results about order complexes and
shellable complexes which will be used throughout the paper. The reader who is
familiar with the main results in these areas can skip this section and refer back to
it when necessary. We begin with some homotopy results of Quillen.

Definition 2.1. Let P,Q be posets.
(1) A morphism f : P → Q is a function such that x ≤P y implies f(x) ≤Q f(y).
(2) If f : P → Q is a morphism, then for y ∈ Q define

fy := {x ∈ P : f(x) ≤ y}
and

fy := {x ∈ P : f(x) ≥ y} .

Proposition 2.2 ([12, 1.5]). If a poset P contains a unique minimal element or a
unique maximal element, then ∆(P ) is contractible.

Proposition 2.3 ([12, Proposition 1.6]). Let f : P → Q be a morphism of posets.
If ∆(fy) is contractible for all y ∈ Q or ∆(fy) is contractible for all y ∈ Q, then f
induces a homotopy equivalence between ∆(P ) and ∆(Q).

Corollary 2.4. Let P be a finite poset. Set

S = {x ∈ P : x is covered by a unique element in P}
and

T = {x ∈ P : x covers a unique element in P} .
Then for any S′ ⊆ S and T ′ ⊆ T , ∆(P ) is homotopy equivalent to both ∆(P \ S′)
and ∆(P \ T ′).

Proof. Let i : P \ S′ ↪→ P be the identity embedding. Fix y ∈ P . If y 6∈ S′ then
iy = {x ∈ P \ S′ : x ≥ y}. If y ∈ S′, let z0 be the unique element of P covering y.
For i ≥ 0, if zi ∈ S′ let zi+1 be the unique element of P covering zi. Since P is finite,
there is a smallest k such that zk 6∈ S′, and iy = {x ∈ P \ S′ : x ≥ zk}. In any case,
∆(iy) is contractible by Proposition 2.2, and i induces a homotopy equivalence of
order complexes by Proposition 2.3. The proof for P \ T ′ is similar.

Corollary 2.5. Let L be a finite lattice and let M be the sublattice of L consisting
of the minimum element 0̂, the maximum element 1̂, and all x ∈ L such that
x =

∧
c∈C c for some set C of coatoms of L. For X ∈ {L,M} let X = X \

{
0̂, 1̂
}

.
Then ∆(L) and ∆(M) are homotopy equivalent.

Proof. Let i : M → L be the identity embedding, and let C be the set of coatoms
of L. For each x ∈ L, let C(x) = {c ∈ C : x ≤ c}. Then

∧
c∈C(x) c is the unique

minimum element of ix. The corollary now follows from Propositions 2.2 and 2.3.

Next we state a well-known collapsibility result (see [8]).
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Lemma 2.6. Let ∆ be a simplicial complex and let τ be a face of ∆ such that τ
is properly contained in a unique facet of ∆. Let ∆τ be the complex obtained by
removing from ∆ all faces containing τ . Then ∆ and ∆τ are homotopy equivalent.

The following results on shellable complexes appear in [2].

Definition 2.7. Let ∆ be a finite simplicial complex.
(1) For a simplex σ ∈ ∆, d(σ) := max {|τ | : σ ⊆ τ ∈ ∆}.
(2) For 0 ≤ j ≤ i, fi,j is the number of simplices σ ∈ ∆ such that |σ| = j and

d(σ) = i.
(3) For 0 ≤ j ≤ i, hi,j :=

∑j
k=0(−1)j−k

(
i−k
j−k
)
fi,k.

Definition 2.8. Let ∆ be a finite simplicial complex and let σ1, . . . , σn be a
shelling of ∆.

(1) R(σk) := {x ∈ σk : σk \ {x} ⊆ σi for some i < k}.
(2) Γj := {σk : |σk| = j and R(σk) = σk}.

Theorem 2.9 ([2, Theorems 3.4 and 4.1]). Let ∆ be a finite simplicial complex
and let σ1, . . . , σn be a shelling of ∆.

(1) Then hi,j is the number of σk such that |σk| = i and |R(σk)| = j. In particu-
lar, hj,j = |Γj | and hi,j ≥ 0 for all i, j.

(2) Also, ∆ has the homotopy type of a wedge of spheres, consisting of hj,j spheres
of dimension j− 1 for each j. In particular, dim(H̃j−1(∆)) = hj,j is at most
the number of facets of ∆ having dimension j − 1.

Definition 2.10. Let ∆ be an abstract simplicial complex of finite dimension d.
For each 0 ≤ r ≤ s ≤ d, define the complex

∆(r,s) := {τ ∈ ∆ : dim(τ) ≤ s and τ ⊆ σ for some σ ∈ ∆ with dim(σ) ≥ r} .
Theorem 2.11 ([2, Theorem 2.9]). If ∆ is a shellable complex of finite dimension
d, then ∆(r,s) is shellable for all 0 ≤ r ≤ s ≤ d.

Definition 2.12. Let P be a finite poset with a unique minimum element 0̂ and a
unique maximum element 1̂. We say that P admits a recursive coatom ordering if
P =

{
0̂, 1̂
}

or if there is an ordering m1, . . . ,mr of the coatoms of P which satisfies
the following two properties.
(R) For all j ∈ [r], the poset Pj =

[
0̂,mj

]
admits a recursive coatom ordering in

which the coatoms of Pj which are contained in a poset Pi =
[
0̂,mi

]
for some

i < j come before all other coatoms.
(S) For all 1 ≤ i < k ≤ r and x ∈ P , if x ≤ mi and x ≤ mk, then there exist

some j < k and some coatom w of Pk such that x ≤ w ≤ mj .

Since the posets we will work with are lattices, we can replace condition (S) in
Definition 2.12 by the equivalent condition described below. The equivalence of the
given conditions follows immediately from the definition of a lattice.

Proposition 2.13. Let L be a finite lattice, and let m1, . . . ,mr be an ordering of
the coatoms of L. This ordering satisfies condition (S) of Definition 2.12 if and
only if it satisfies the following condition.
(T) For all 1 ≤ i < j ≤ r there exists some k < j such that mi ∧mj ≤ mk ∧mj

and mk ∧mj is a coatom of
[
0̂,mj

]
.
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The next result, which follows immediately from Theorems 5.8 and 5.11 of [2],
shows that in order to prove that G is shellable it suffices to show that L(G) admits
a recursive coatom ordering.

Theorem 2.14 (Björner-Wachs). Let P be a finite poset with a unique minimum
element 0̂ and a unique maximum element 1̂. If P admits a recursive coatom
ordering, then P is shellable.

3. Shellable groups are solvable

In this section it will be shown that if a finite group G is shellable then G must be
solvable. This result will be achieved by reducing the problem to the examination
of the minimal simple groups. Recall that a minimal simple group is a nonabelian
finite simple group all of whose proper subgroups are solvable. The reduction is
achieved by applying an elementary result of Björner on shellable posets. Recall
that a section of a finite group G is a quotient group of a subgroup of G. If G is a
nonsolvable finite group, then some section of G is a minimal simple group.

Proposition 3.1. If a finite group G is shellable, then every section of G is shell-
able.

Proof. Proposition 4.2 of [1] says that if a graded poset P is shellable then every
interval in P is shellable. It is straightforward to adapt the proof of this proposition
to the nongraded case. Now if N E H ≤ G then the interval [N,H ] in L(G) is
isomorphic to L(H/N), and our proposition follows immediately.

The goal of this section is achieved by proving the following theorem.

Theorem 3.2. A minimal finite simple group is not shellable.

The minimal finite simple groups were determined by Thompson, well before the
classification of finite simple groups was achieved. A list is given below.

Theorem 3.3 ([17, Corollary 1]). A finite simple group all of whose proper sub-
groups are solvable is isomorphic to one of the groups listed below.
(A) L2(p) with p ≥ 5 prime and p 6≡ 1, 4 mod 5.
(B) L2(2p) with p prime.
(C) L2(3p) with p ≥ 3 prime.
(D) Sz(2p) with p ≥ 3 prime.
(E) SL3(3).

Note that L2(4) ∼= L2(5) ∼= A5, whereA5 is the alternating group on five symbols.
The structures of the subgroup lattices of the minimal simple groups are well-
understood, and Theorem 3.2 will be proved by careful examination of each of the
five classes of groups given above. We begin by determining all nontrivial subgroups
of G which are intersections of maximal subgroups when G is one of the groups
described in cases (A) through (D). In what follows, Zn denotes a cyclic group of
order n and Dn denotes a dihedral group of order n. For a prime p, Epa denotes
an elementary abelian group of order pa. For any groups X and Y , X.Y denotes
a split extension of a group isomorphic to X by a group of automorphisms of X
isomorphic to Y . Also, a.b will denote X.Y if X ∼= Za and Y ∼= Zb. Sn and An
denote the symmetric and alternating groups on n letters, respectively.
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For a prime power q, all subgroups of L2(q) are listed in [4]. Those subgroups
of L2(q) which are intersections of maximal subgroups are determined in [7]. The
results when L2(q) is a minimal simple group are as follows.

Lemma 3.4. Let p > 7 be a prime such that L = L2(p) is a minimal simple group.
The maximal subgroups of L are those on the following list.
• One conjugacy class of |L|p−1 Dp−1.

• One class of |L|p+1 Dp+1.
• One class of p+ 1 p.p−1

2 .
• Two classes of |L|24 S4, if p ≡ 1, 7 mod 8.
• One class of |L|12 A4, if p ≡ 3, 5 mod 8.

Furthermore, the nontrivial nonmaximal subgroups of L which are intersections
of maximal subgroups are those on the following list.
• One or two classes containing a total of |L|8 D8, if p ≡ 1, 7 mod 8.
• One or two classes containing a total of |L|6 S3, if p ≡ 1, 7 mod 8.
• Two classes of |L|24 D4, if p ≡ 1, 7 mod 8.
• One class of |L|12 D4, if p ≡ 3, 5 mod 8.
• One class of |L|p−1 Z p−1

2
.

• One class of |L|v Z3, where v ∈ {p+ 1, p− 1} and 3|v.
• One class of |L|t Z2, where t ∈ {p+ 1, p− 1} and 4|t.

The maximal subgroups of A5 are contained in one conjugacy class of five A4,
one class of six D10 and one class of ten D6. The nontrivial nonmaximal subgroups
of A5 which are intersections of maximal subgroups are contained in one conjugacy
class of ten Z3 and one class of fifteen Z2.

The maximal subgroups of L2(7) are contained in two conjugacy classes each
containing seven S4 and one class of eight 7.3. The nontrivial nonmaximal sub-
groups of L2(7) which are intersections of maximal subgroups are contained in one
conjugacy class of twenty one D8, one class of twenty eight D6, two classes each
containing seven D4, one class containing twenty eight Z3 and one class containing
twenty one Z2.

Lemma 3.5. Let p be an odd prime and set q = 2p. The maximal subgroups of
L = L2(q) are those on the following list.

• One conjugacy class of |L|
2(q−1) D2(q−1).

• One class of |L|
2(q+1) D2(q+1).

• One class of q + 1 E2p .Zq−1.
Furthermore, the nontrivial nonmaximal subgroups of L which are intersections

of maximal subgroups are those on the following list.
• One class of |L|

2(q−1) Zq−1.

• One class of |L|q Z2.

Lemma 3.6. Let p be an odd prime and set q = 3p. The maximal subgroups of
L = L2(q) are those on the following list.

• One conjugacy class of |L|
(q−1) Dq−1.

• One class of |L|
(q+1) Dq+1.
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• One class of q + 1 E3p .Z q−1
2

.

• One class of |L|12 A4.
Furthermore, the nontrivial nonmaximal subgroups of L which are intersections

of maximal subgroups are those on the following list.

• One class of |L|12 D4.
• One class of |L|

(q−1) Z q−1
2

.

• Two classes of |L|q Z3.

• One class of |L|q+1 Z2.

The maximal subgroups of the Suzuki groups are determined in [15]. Using
further information from [15], one can determine the nonmaximal subgroups of
Sz(2p) which are intersections of maximal subgroups. The results are stated below.

Lemma 3.7. Let p be an odd prime. Set q = 2p and r =
√

2q. The maximal
subgroups of G = Sz(q) are those on the following list.

• One conjugacy class of |G|
q2(q−1) S.Zq−1, where S ∈ Syl2(G).

• One class of |G|
2(q−1) D2(q−1).

• One class of |G|
4(q+r+1) (q + r + 1).4.

• One class of |G|
4(q−r+1) (q − r + 1).4.

Furthermore, the nontrivial nonmaximal subgroups of G which are intersections
of maximal subgroups are those on the following list.

• One class of |G|
2(q−1) Zq−1.

• One class of |G|2q Z4.

• One class of |G|q2 Z2.

We will now use the four lemmas just stated to determine the homotopy type
of ∆(L(G)) in cases (A) through (D) of Theorem 3.3 except in the case G = L2(p)
with p ≡ 1, 7 mod 8.

Lemma 3.8. Let G be a minimal simple group isomorphic to one of L2(p) with
p ≡ 3, 5 mod 8, L2(2p), L2(3p) or Sz(2p). Then ∆(L(G)) has the homotopy type
of a wedge of |G| 1-spheres.

Proof. In each of the given cases, it is known that χ̃(∆(L(G))) = −|G| (see [9]
for L2(p), [6] or [7] for L2(2p), [7] or [13] for L2(3p) and [13] for Sz(2p)). Thus
it is sufficient to show that ∆(L(G)) is connected and homotopy equivalent to a
1-dimensional complex. To show that ∆(L(G)) is connected, it suffices to show
that if X and Y are maximal subgroups of G then there is a path in the 1-skeleton
of ∆(L(G)) between (the vertices corresponding to) X and Y . First note that if A
and B are subgroups of G of order two then 〈A,B〉 is a proper dihedral subgroup
of G. Thus there is a path from A to B. It follows that all maximal subgroups
of G having even order are in the same connected component of the 1-skeleton. If
X ≤ G is a maximal subgroup of odd order, then it follows from the four lemmas
above that either G = L2(p) with p ≡ 3 mod 4 and X = p.p−1

2 , or G = L2(3p) and
X = E3p .Z 3p−1

2
. In either case, there exists a dihedral maximal subgroup D < G
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such that D ∩X 6= 1. Thus there is a path from X to D, and it follows that the
1-skeleton is connected.

Let P be the subposet of L(G) consisting of those nontrivial proper subgroups of
G which are intersections of maximal subgroups, of course including the maximal
subgroups themselves. By Corollary 2.5, ∆(L(G)) and ∆(P) have the same homo-
topy type, so it suffices to show that ∆(P) is homotopy equivalent to a 1-dimensional
complex. By Lemma 3.5, if G = L2(2p) then ∆(P) is already 1-dimensional, so it
remains to examine the other three cases.

First assume G = Sz(2p). It is shown in [15] that G has one conjugacy class
of involutions, so by Lemma 3.7 every subgroup of G having order two is in P . It
follows that every element of P isomorphic to Z4 covers a unique element of P .
Let P0 be the poset obtained by removing all subgroups isomorphic to Z4 from P .
By Corollary 2.4, ∆(P) and ∆(P0) have the same homotopy type. By Lemma 3.7,
∆(P0) is 1-dimensional.

Finally, assume G = L2(q), where either q is prime and satisfies the conditions
of the lemma or q = 3p with p an odd prime. By Lemmas 3.4 and 3.6, every facet
in ∆(P) has dimension one or two. Furthermore, if σ = X < Y < Z is a 2-simplex
in ∆(P) then exactly one of the following cases holds.

1. X ∼= Z2, Y ∼= D4 and Z ∼= A4.
2. X ∼= Z3, Y ∼= Z q−1

2
, Z ∼= Dq−1, q is prime and q ≡ 1 mod 3.

3. X ∼= Z3, Y ∼= Z q−1
2

, Z ∼= q. q−1
2 , q is prime and q ≡ 1 mod 3.

4. X ∼= Z2, Y ∼= Z q−1
2

, Z ∼= q. q−1
2 , q is prime and q ≡ 1 mod 4.

5. X ∼= Z2, Y ∼= D4 and Z ∼= Dn, where n ∈ {q − 1, q + 1} with 4|n, and X is
not the center of Z.

6. X ∼= Z2, Y ∼= Z q−1
2

, Z ∼= Dq−1, q is prime and q ≡ 1 mod 4.
7. X ∼= Z2, Y ∼= D4 and Z ∼= Dn, where n ∈ {q − 1, q + 1} with 4|n, and X is

the center of Z.
In the first five cases above, σ is the unique facet of ∆(P) containing τ(σ) =

X < Z. Let ∆0 be the complex obtained by removing from ∆(P) all pairs σ, τ(σ)
where σ is one of the 2-simplices described in the first five cases above. By Lemma
2.6, ∆(P) and ∆0 are homotopy equivalent. Now let σ be as in the sixth or seventh
case above. Then σ is the unique facet in ∆0 containing τ(σ) = Y < Z. Let
∆1 be the complex obtained by removing from ∆0 all pairs σ, τ(σ) where σ is one
of the 2-simplices described in the sixth or seventh case above. Again by Lemma
2.6, ∆0 is homotopy equivalent to the 1-dimensional complex ∆1, and the lemma
follows.

Corollary 3.9. Let G be a minimal simple group isomorphic to one of L2(p) with
p ≡ 3, 5 mod 8 and p > 5, L2(2p) with p an odd prime, L2(3p) or Sz(2p). Then
∆(L(G)) is not shellable.

Proof. By Theorem 2.9 and Lemma 3.8, if ∆(L(G)) is shellable then it contains
at least |G| 1-dimensional facets. We will examine each possibility for G using
Lemmas 3.4, 3.5, 3.6 and 3.7, and show that this condition cannot hold. Note that
a 1-dimensional facet in ∆(L(G)) is a chain X < Y such that Y is a maximal
subgroup of G, X is a maximal subgroup of Y and |X | is prime.

If G = L2(p) with p ≡ 3, 5 mod 8, then ∆(L(G)) contains |G|3 1-dimensional
facets X < Y with X ∼= Z3 and Y ∼= A4. There are no other 1-dimensional facets
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in ∆(L(G)) unless p−1
2 or p+1

2 is prime. Since p > 5, at most one of these two
numbers can be prime. If p−1

2 is prime then the remaining 1-dimensional facets in
∆(L(G)) are |G|2 chains X < Y with X ∼= Z2 and Y ∼= Dp−1, |G|p−1 chains X < Y

with X ∼= Z p−1
2

and Y ∼= Dp−1, 2|G|
p−1 chains X < Y with X ∼= Z p−1

2
and Y ∼= p.p−1

2 ,

and 2|G|
p(p−1) chainsX < Y with X ∼= Zp and Y ∼= p.p−1

2 . It follows that if there are at
least |G| 1-facets then p < 20. However, the only primes p < 20 with p ≡ 3, 5 mod 8
and p−1

2 prime are 5 and 11, and L2(11) contains A5 and is therefore not a minimal
simple group. If p+1

2 is prime, then the remaining 1-dimensional facets in ∆(L(G))
are |G|2 chains X < Y with X ∼= Z2 and Y ∼= Dp+1, and |G|

p+1 chains with X ∼= Z p+1
2

and Y ∼= Dp+1. Since p > 5, there are less than |G| 1-dimensional facets.
If G = L2(q) where q = 2p with p an odd prime, then ∆(L(G)) contains no

1-dimensional facets unless q − 1 is prime. In that case, the 1-dimensional facets
in ∆(L(G)) are |G|2 chains X < Y with X ∼= Z2 and Y ∼= D2(q−1),

|G|
2(q−1) chains

X < Y with X ∼= Zq−1 and Y ∼= D2(q−1), and |G|
q−1 chains X < Y with X ∼= Zq−1

and Y ∼= E2p .Zq−1. The total number of 1-dimensional facets in this case is less
than |G|.

If G = L2(q) where q = 3p with p an odd prime, then ∆(L(G)) contains |G|3 facets
X < Y with X ∼= Z3 and Y ∼= A4, and no other 1-dimensional facets unless q−1

2

is prime. If q−1
2 is prime, then the additional 1-dimensional facets of ∆(L(G)) are

|G|
2 chains X < Y with X ∼= Z2 and Y ∼= Dq−1, |G|q−1 chains X < Y with X ∼= Z q−1

2

and Y ∼= Dq−1, and 2|G|
q−1 chains X < Y with X ∼= Z q−1

2
and Y ∼= E3p .Z q−1

2
. Since

q ≥ 27, there are less than |G| 1-dimensional facets.
If G = Sz(q) where q = 2p with p an odd prime, then ∆(L(G)) has no 1-

dimensional facets unless q − 1 is prime. If q − 1 is prime then the 1-dimensional
facets of ∆(L(G)) are |G|2 chains X < Y with X ∼= Z2 and Y ∼= D2(q−1), and |G|

2(q−1)

chains X < Y with X ∼= Zq−1 and Y ∼= D2(q−1). Here we have used the fact, stated
in [15], that if S ∈ Syl2(G) then S is not abelian. Thus S has a characteristic
nontrivial proper subgroup and S.Zq−1 has no maximal subgroup of order q−1. In
any case, ∆(L(G)) has less than |G| 1-dimensional facets, and we are done.

Lemma 3.10. If G = A5 then ∆(L(G)) is not shellable.

Proof. Write ∆ for ∆(L(G)). If ∆ is shellable then by Theorem 2.11 so is ∆(2,2).
By Lemma 3.4, the facets of ∆(2,2) are 15 chains X < Y < Z with X ∼= Z2, Y ∼= D4

and Z ∼= A4. If σ and τ are two such facets then |σ∩τ | ≤ 1, as any involution in A5

fixes exactly one point in the natural representation and each A4 is the stabilizer of
a point. It follows immediately from Definition 1.1 that ∆(2,2) is not shellable.

It remains to examine the minimal simple groups L2(p) with p ≡ 1, 7 mod 8,
along with SL3(3).

Lemma 3.11. Let G = L2(p) be a minimal simple group with p ≡ 1, 7 mod 8.
Then H̃1(∆(L(G))) 6= 0.

Proof. Let P be the subposet of L(G) consisting of those groups which are inter-
sections of maximal subgroups of G. By Corollary 2.5, it is sufficient to show that
H̃1(∆(P)) 6= 0. Set r = p−1

2 . By Lemma 3.4, ∆(P) contains 1-simplices X < Y
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with X ∼= Zr and Y ∼= p.r. Furthermore, any facet of ∆(P) properly containing
one of these 1-simplices is of the form σ = W < X < Y with W ∼= Za, where
a ∈ {2, 3} and a|r. For such a facet σ, let τ(σ) = W < Y . Then σ is the unique
facet of ∆(P) containing τ(σ). Let ∆0 be the complex obtained by removing all
pairs σ, τ(σ) described above from ∆(P). By Lemma 2.6, ∆(P) and ∆0 have the
same homotopy type, so it suffices to show that H̃1(∆0) 6= 0. Let ∆1 be the sub-
complex of ∆0 whose facets are all chains X < Y with X ∼= Zr and Y ∼= p.r. Then
∆1 is a graph with p+ 1 + p(p+1)

2 vertices and p(p+ 1) edges. Since p > 2, ∆1 has
more edges than vertices, and is not a forest. Therefore, H̃1(∆1) 6= 0. Since every
1-simplex in ∆1 is a facet in ∆0, H̃1(∆0) 6= 0 and we are done.

Corollary 3.12. Let G = L2(p) be a minimal simple group with p ≡ 1, 7 mod 8.
Then ∆(L(G)) is not shellable.

Proof. By Lemma 3.11 and Theorem 2.9(2), if ∆(L(G)) is shellable then it contains
some 1-dimensional facets. By Lemma 3.4, ∆(L(G)) contains 1-dimensional facets
if and only if either p−1

2 or p+1
2 is prime. We will examine both of these possibilities.

From now on, we write ∆ for ∆(L(G)). Let d be the dimension of the largest facet
in ∆, so d = l(G)− 1.

First assume that p+1
2 is prime, and set r = p−1

2 . Note that in this case, p ≡
1 mod 8, so 2|r. By Lemma 3.4, ∆(2,d) is the order complex of the ideal in L(G)
generated by maximal subgroups of G isomorphic to D2r, p.r or S4. Let P be
the subposet of L(G) consisting of those subgroups of G which are intersections of
these maximal subgroups. Then ∆(2,d) and ∆(P) have the same homotopy type
by Corollary 2.5, and ∆(P) contains the chains X < Y with X ∼= Zr and Y ∼= p.r
described in Lemma 3.11. The same argument used in the proof of that lemma
shows that H̃1(∆(2,d)) 6= 0. It now follows from Theorem 2.9(2) and the fact that
∆(2,d) has no 1-dimensional facets that ∆(2,d) is not shellable. By Theorem 2.11,
∆ is not shellable.

Now, assume that p−1
2 is prime, and set s = p+1

2 . Note that in this case,
p ≡ 7 mod 8, so 8|2s. It follows that exactly one of the following three cases holds.

1. p+ 1 = 2s has at least five prime factors, counting multiplicities.
2. 3|p− 1, so p = 7.
3. p+ 1 = 24, so p = 23.

If 2s has at least five prime factors, then by Lemma 3.4 ∆(d,d) is the order complex
of the ideal in L(G) generated by the maximal subgroups of G isomorphic to D2s.
Let P be the subposet of L(G) consisting of those groups which are intersections
of these maximal subgroups, so ∆(d,d) and ∆(P) have the same homotopy type
by Corollary 2.5. By Lemma 3.4, P consists of those subgroups of G isomorphic
to Z2,D4 or D2s. Let Q be the subposet of P consisting of those subgroups of
G isomorphic to D4 or Z2, and let i : Q ↪→ P be the identity embedding. Note
that for each X ∈ P , iX is the poset of nontrivial elementary abelian 2-subgroups
of X . Also, note that O2(X) 6= 1, that is, each X ∈ P contains a nontrivial
normal 2-subgroup. By [12, Lemma 2.2], iX is contractible for all X ∈ P . Thus
by Proposition 2.3, ∆(P) and ∆(Q) have the same homotopy type. Now ∆(Q) is
a graph with |G|

12 + |G|
2s vertices and |G|

4 edges. Since there are more edges than
vertices, ∆(Q) is not a forest and H̃1(∆(Q)) 6= 0. Thus H̃1(∆(d,d)) 6= 0, and since
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∆(d,d) has no 1-dimensional facets, it is not shellable by Theorem 2.9(2). Now ∆ is
not shellable by Theorem 2.11.

If p = 7 then by Lemma 3.4 ∆(3,3) is the order complex of the subposet P of L(G)
consisting of those subgroups of G isomorphic to Z2,Z4,D4,D8,A4 or S4. Note that
O2(X) 6= 1 for each X ∈ P . Now as in the above paragraph, we see that ∆(3,3) and
∆(Q) have the same homotopy type, where Q is the subposet of L(G) consisting of
those subgroups of G isomorphic to Z2 or D4, and that H̃1(∆(P)) 6= 0. As above,
it follows that ∆ is not shellable.

If p = 23 the situation is more complicated, but it can be shown that ∆ is not
shellable either by using Lemma 2.6 to show that ∆(3,3) has the same homotopy type
as a noncontractible 2-dimensional complex, or by calculating that h4,3 = −3,040
and applying Theorem 2.9(1). This last calculation can be done by hand.

Lemma 3.13. If G = SL3(3) then ∆(L(G)) is not shellable.

Proof. Write ∆ for ∆(L(G)), and let d = l(G)− 1 be the dimension of the largest
facet of ∆. We will see that ∆(d,d) is not shellable and apply Theorem 2.11. Let
V be a 3-dimensional vector space over F3 on which G acts naturally. It is known
that the only subgroups of G which are of prime index in G are the stabilizers
in G of the nontrivial proper subspaces of V (see for example [3]). For any finite
solvable group H , l(H) + 2 is equal to the number of prime factors of |H |, counting
multiplicities. It follows that the facets of ∆(d,d) are chains X0 < X1 < . . . < Xd

such that Xd is a subspace stabilizer and [Xi : Xi−1] is prime for 1 ≤ i ≤ d.
It is known that G acts 2-transitively on the set of 13 1-spaces in V and on the

set of 13 2-spaces in V . Let M < G be the stabilizer of a fixed 1-space W < V .
If K is the stabilizer of another 1-space, then by 2-transitivity [M : K ∩M ] = 12.
Also by 2-transitivity, M acts transitively on the set of four 2-spaces in V which
contain W , so if K is the stabilizer of such a 2-space then [M : K ∩M ] = 4. It can
be shown using elementary linear algebra that M also acts transitively on the set of
nine 2-spaces in V which do not contain W , so if K is the stabilizer of such a 2-space
then [M : K ∩M ] = 9. The stabilizers in G of 1-spaces from V are conjugate in
Aut(G) with the stabilizers of 2-spaces. We now see that if X and Y are distinct
subspace stabilizers then [X : X ∩ Y ] ∈ {4, 9, 12}. In particular, X ∩ Y is not of
prime index in X . Thus if X0 < . . . < Xd−1 < Xd and Y0 < . . . < Yd−1 < Yd are
facets of ∆(d,d) with Xd 6= Yd, then Xd−1 6= Yd−1. It now follows from Definition 1.1
that ∆(d,d) is not shellable. Indeed, if σ1, . . . , σr is a list of the facets, let i be the
smallest index such that the maximum element of σi is not the maximum element
of σ1. Then |σi ∩ σj | < |σi| − 1 for all j < i, and this list is not a shelling.

The proof of Lemma 3.13 completes the proof of Theorem 3.2. Note that many
of the results in this section can be obtained in the same manner as Lemma 3.13,
that is, by examining intersections of maximal subgroups of a minimal simple group
G and showing that the complex ∆(d,d) cannot be shellable. The proofs used here
were chosen because they give some insight into the homotopy type and homology
of ∆(L(G)). We close this section by noting one further result.

Proposition 3.14. Let G be a minimal simple group. Then H̃1(∆(L(G))) 6= 0.

Proof. Given Lemmas 3.8 and 3.11, it is now sufficient to prove the claim when
G = SL3(3). Using information given in [3], we see that ∆(L(G)) contains facets of
the form X < Y with X ∼= Z3 and Y ∼= 13.3. Let ∆0 be the subcomplex generated
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by these facets. Again using [3], we see that ∆0 is a graph with |G|18 + |G|
39 vertices

and |G|3 edges. Thus ∆0 is not a forest, so H̃1(∆0) 6= 0 and we are done.

4. Solvable groups are shellable

In this section, it will be shown that if G is a solvable finite group then L(G) ad-
mits a recursive coatom ordering. It then follows from Theorem 2.14 that ∆(L(G))
is shellable, and this completes the proof of Theorem 1.4. The reader who has read
[18] should be aware that the proposed counterexample to the claim that all solvable
finite groups are shellable given in that paper is incorrect, as a dihedral subgroup
of order ten has been omitted from the subgroup lattice of the given group.

We will need some facts about the intersections of maximal subgroups of solvable
groups. Recall that if H is a subgroup of a finite group G then CoreG(H) is the
largest normal subgroup of G contained in H .

Theorem 4.1 (Ore). Let L and M be maximal subgroups of a finite solvable group
G. Then L and M are conjugate in G if and only if CoreG(L) = CoreG(M).

Proof. See Theorem (16.1) of section A of [5].

It follows immediately from the theorem above that the partial order described
in the following definition is well-defined.

Definition 4.2. Let G be a finite solvable group. For H ≤ G, HG will denote the
conjugacy class of H in G. Define a partial order � on the conjugacy classes of
maximal subgroups of G by LG �MG if and only if CoreG(L) ≤ CoreG(M).

Theorem 4.3. Let L and M be maximal subgroups of a finite solvable group G
which are not conjugate in G. If MG 6� LG, then L ∩M is a maximal subgroup of
L.

Proof. This is Theorem (16.6) of Section A of [5].

Lemma 4.4. Let M,M ′ be conjugate maximal subgroups of a finite solvable group
G, with M 6= M ′. Let J be any proper subgroup of M containing M ∩M ′. Then
there exists some maximal subgroup L < G such that J ≤ L and MG ≺ LG.

Proof. Let C = CoreG(M) = CoreG(M ′). There exists a unique subgroup K ≤ G
such that C < K E G, MK = M ′K = G and M ∩K = M ′ ∩K = C (see (15.2) of
Section A of [5]). An order argument shows that JK < G. Let L be any maximal
subgroup of G containing JK. Since K ≤ L, we have C < K ≤ CoreG(L), so
MG ≺ LG.

Definition 4.5. Let G be a finite solvable group. An SC-list for G is an ordering
M of the maximal subgroups of G with the following properties.

(1) If L,M are maximal subgroups of G which are not conjugate in G and L
appears before M in M, then every element of LG appears before M in M.

(2) If L,M are maximal subgroups of G and MG ≺ LG, then L appears before
M in M.

Note that condition (1) of Definition 4.5 requires that the conjugates of any
maximal subgroup of G form a segment in any SC-list for G. Also, it follows
immediately from the fact that the partial order � has a linear extension that an
SC-list for G exists for any finite solvable group G. We can construct segments
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by listing the elements of each conjugacy class of maximal subgroups in arbitrary
order and then get an SC-list by ordering the segments according to the reverse of
some linear extension.

Lemma 4.6. Let G be a finite solvable group and let M be an SC-list for G. Then
M satisfies condition (T) of Proposition 2.13.

Proof. We must show that if L appears before M in M then there exists some K
appearing before M in M such that L ∩M ≤ K ∩M and K ∩M is maximal in
M . First assume that L and M are not conjugate in G. Since L appears before M
in G, LG 6� MG and L ∩M is maximal in M by Theorem 4.3. Thus we can take
K = L. Now assume L and M are conjugate in G. Let J be any maximal subgroup
of M containing L ∩M . By Lemma 4.4, there exists some maximal K < G such
that J ≤ K and MG ≺ KG. By condition (2) of Definition 4.5, K appears before
M in M. Since J is maximal in M , K ∩M = J .

We will now see that we can choose SC-lists for all nontrivial subgroups of a
finite group G in a manner that satisfies condition (R) of definition 2.12.

Lemma 4.7. Let G be a finite solvable group and let M = M1, . . . ,Mr be an SC-
list for G. Then for any j ∈ [r], the set of maximal subgroups of Mj of the form
Mi ∩Mj with i < j is a union of Mj-conjugacy classes.

Proof. We must show that if H = Mi ∩ Mj is maximal in Mj and i < j, then
for every x ∈ Mj there exists some k < j such that Hx = Mk ∩Mj . If Mi is
conjugate to Mj in G, then by Lemma 4.4 there exists some Ml such that H < Ml

and MG
j ≺MG

l . Since Ml is not conjugate to Mj in G and M is an SC-list, l < j.
Since H is maximal in Mj, Ml ∩Mj = H . Therefore, we may assume without loss
of generality that Mi and Mj are not conjugate in G. Now for any x ∈Mj we have

Hx = (Mi ∩Mj)x = Mx
i ∩Mj .

Since M is an SC-list and Mi appears before Mj in M with Mi and Mj not
conjugate in G, Mx

i appears before Mj in M.

Lemma 4.8. Let G be a finite solvable group and let M = M1, . . . ,Mr be an SC-
list for G. Fix j ∈ [r]. Let H = Mi ∩Mj be a maximal subgroup of Mj with i < j.
Let X be a maximal subgroup of Mj with CoreMj (H) ≤ CoreMj (X). Then there
is some l < j such that X = Ml ∩Mj.

Proof. As in the proof of Lemma 4.7, we may assume that Mi and Mj are not
conjugate in G. Now

CoreG(Mi) ∩Mj ≤ CoreMj (H) ≤ CoreMj (X) ≤ X,

so CoreG(Mi) ∩Mj = CoreG(Mi) ∩X . An order argument gives XCoreG(Mi) <
G. Let Ml be any maximal subgroup of G containing XCoreG(Mi). Since X is
maximal in Mj , Ml ∩Mj = X . We now have
• i < j,
• CoreG(Mi) ≤ CoreG(Ml),
• Mi and Mj are not conjugate in G, and
• M is an SC-list for G.

It follows that l < j.
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Corollary 4.9. Let G be a finite solvable group and let M = M1, . . . ,Mr be an
SC-list for G. Then for each j ∈ [r] there exists an SC-list for Mj in which all
maximal subgroups of Mj of the form Mi ∩Mj with i < j appear before all other
maximal subgroups of Mj.

Proof. Fix j and let J1 be the set of all maximal subgroups of Mj of the form
Mi ∩Mj with i < j, and let J2 be the set of all the other maximal subgroups of
Mj. By Lemma 4.7, each Ji is a union of Mj-conjugacy classes. Let �j be the
partial order on conjugacy classes of maximal subgroups ofMj as given in Definition
4.2. Using the restriction of �j to the Mj-conjugacy classes contained in Ji, we
see that for each i ∈ {1, 2} there exists a list Ri of the elements of Ji satisfying the
following conditions.

(a) If X,Y ∈ Ji with X and Y not conjugate in Mj and X appears before Y in
Ri, then every Mj-conjugate of X appears before Y in Ri.

(b) If X,Y ∈ Ji and XMj �j YMj , then Y appears before X in Ri.
Let R be the list of maximal subgroups of Mj obtained by placing R2 after R1.
Given the fact that each Ri satisfies conditions (a) and (b) above, it is sufficient
to show that if Y ∈ J2 and X ∈ J1 then X 6�j Y . This follows immediately from
Lemma 4.8.

Lemma 4.6 and Corollary 4.9 give the following result.

Corollary 4.10. If G is a finite solvable group, then L(G) admits a recursive
coatom ordering.

By Theorem 2.14, L(G) is shellable, and the proof of Theorem 1.4 is complete.
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