Invariants and projections of six lines in projective space
HTML articles powered by AMS MathViewer
- by Dana R. Vazzana
- Trans. Amer. Math. Soc. 353 (2001), 2673-2688
- DOI: https://doi.org/10.1090/S0002-9947-01-02742-8
- Published electronically: January 18, 2001
- PDF | Request permission
Abstract:
Given six lines in $\mathbf {P}^3$, quartics through the six lines define a map from $\mathbf {P}^3$ to $\mathbf {P}^4$, and the image of this map is described in terms of invariants of the six lines. The map can be interpreted as projection of the six lines, and this permits a description of the canonical model of the octic surface which is given by points which project the lines so that they are tangent to a conic. We also define polarity for sets of six lines, and discuss the above map in the case of a self-polar set of lines and in the case of six lines which form a “double-sixer” on a cubic surface.References
- H. Baker. Principles of Geometry, Vol. 3. Cambridge Univ. Press, 1927.
- A. Cayley. On the surfaces each the locus of the vertex of a cone which passes through $m$ given points and touches $6-m$ given lines. Proc. London Math. Soc., 4:11–47, 1872.
- A. Coble. Algebraic Geometry and Theta Functions. Amer. Math. Soc., 1929.
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- Igor V. Dolgachev, Introduction to geometric invariant theory, Lecture Notes Series, vol. 25, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994. MR 1312159
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- F. Grosshans, R. Gleeson, M. Hirsch, R. M. Williams. Object-image equations for x points and 6 - x lines. Preprint, 1998.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- V. Hierhölzer. Ueber Kegelschnitte im Raume. Math. Ann., 2:563 –585, 1870.
- R. Huang. Combinatorial Methods in Invariant Theory. PhD thesis, Massachusetts Institute of Technology, 1993.
- Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547, DOI 10.1007/BFb0094399
- http://www.mathematik.uni-kl.de/Ëśwwwagag/E/Galerie.html
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
- David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602, DOI 10.1007/978-3-662-00095-3
- I. Schur. Uber die durch collineare grundgebilde erzeugten curven und flachen. Math. Ann., 18:1–32, 1881.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- R. Sturm. Die Gebilde ersten und zweiten Grades der liniengeometrie in synthetischer Behandlung, Vol. 1. B. G. Teubner, 1892.
- Bernd Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993. MR 1255980, DOI 10.1007/978-3-7091-4368-1
- J. Todd. Configurations defined by six lines. Proc. Cambridge Phil. Soc., 29:52–68, 1932.
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- Oscar Zariski, Algebraic surfaces, Classics in Mathematics, Springer-Verlag, Berlin, 1995. With appendices by S. S. Abhyankar, J. Lipman and D. Mumford; Preface to the appendices by Mumford; Reprint of the second (1971) edition. MR 1336146, DOI 10.1007/978-3-642-61991-5
Bibliographic Information
- Dana R. Vazzana
- Affiliation: Department of Mathematics and Computer Science, Truman State University, Kirksville, Missouri 63501
- Email: dvazzana@truman.edu
- Received by editor(s): July 25, 1999
- Published electronically: January 18, 2001
- Additional Notes: The author would like to thank Igor Dolgachev for his invaluable assistance in producing this research.
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2673-2688
- MSC (2000): Primary 14L24; Secondary 14Q10
- DOI: https://doi.org/10.1090/S0002-9947-01-02742-8
- MathSciNet review: 1828467