Galois groups of some vectorial polynomials
HTML articles powered by AMS MathViewer
- by Shreeram S. Abhyankar and Nicholas F. J. Inglis
- Trans. Amer. Math. Soc. 353 (2001), 2941-2969
- DOI: https://doi.org/10.1090/S0002-9947-01-02744-1
- Published electronically: January 29, 2001
- PDF | Request permission
Abstract:
Previously nice vectorial equations were constructed having various finite classical groups as Galois groups. Here such equations are constructed for the remaining classical groups. The previous equations were genus zero equations. The present equations are strong genus zero.References
- Shreeram Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825–856. MR 94354, DOI 10.2307/2372438
- Shreeram S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 68–133. MR 1118002, DOI 10.1090/S0273-0979-1992-00270-7
- Shreeram S. Abhyankar, Nice equations for nice groups, Israel J. Math. 88 (1994), no. 1-3, 1–23. MR 1303488, DOI 10.1007/BF02937504
- Shreeram S. Abhyankar, Again nice equations for nice groups, Proc. Amer. Math. Soc. 124 (1996), no. 10, 2967–2976. MR 1343675, DOI 10.1090/S0002-9939-96-03471-5
- Shreeram S. Abhyankar, More nice equations for nice groups, Proc. Amer. Math. Soc. 124 (1996), no. 10, 2977–2991. MR 1343676, DOI 10.1090/S0002-9939-96-03472-7
- Shreeram S. Abhyankar, Further nice equations for nice groups, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1555–1577. MR 1348146, DOI 10.1090/S0002-9947-96-01584-X
- Shreeram S. Abhyankar, Factorizations over finite fields, Finite fields and applications (Glasgow, 1995) London Math. Soc. Lecture Note Ser., vol. 233, Cambridge Univ. Press, Cambridge, 1996, pp. 1–21. MR 1433135, DOI 10.1017/CBO9780511525988.003
- Shreeram S. Abhyankar, Projective polynomials, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1643–1650. MR 1403111, DOI 10.1090/S0002-9939-97-03939-7
- Shreeram S. Abhyankar, Galois theory of semilinear transformations, Aspects of Galois theory (Gainesville, FL, 1996) London Math. Soc. Lecture Note Ser., vol. 256, Cambridge Univ. Press, Cambridge, 1999, pp. 1–37. MR 1708600
- Shreeram S. Abhyankar and Paul A. Loomis, Once more nice equations for nice groups, Proc. Amer. Math. Soc. 126 (1998), no. 7, 1885–1896. MR 1459101, DOI 10.1090/S0002-9939-98-04421-9
- S. S. Abhyankar and P. A. Loomis, Twice more nice equations for nice groups, Contemp. Math., 256, Amer. Math. Soc., 1999, 63–76.
- P. J. Cameron and W. M. Kantor, $2$-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra 60 (1979), no. 2, 384–422. MR 549937, DOI 10.1016/0021-8693(79)90090-5
- Robert M. Guralnick and Jan Saxl, Monodromy groups of polynomials, Groups of Lie type and their geometries (Como, 1993) London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 125–150. MR 1320519, DOI 10.1017/CBO9780511565823.012
- David Harbater, Abhyankar’s conjecture on Galois groups over curves, Invent. Math. 117 (1994), no. 1, 1–25. MR 1269423, DOI 10.1007/BF01232232
- Nicholas F. J. Inglis, Linear characters of finite linear groups, J. Algebra 214 (1999), no. 2, 545–552. MR 1680577, DOI 10.1006/jabr.1997.7348
- N. F. J. Inglis, Symplectic groups as Galois groups, Journal of Algebra, 227 (2000), 499–503.
- William M. Kantor, Rank $3$ characterizations of classical geometries, J. Algebra 36 (1975), no. 2, 309–313. MR 387386, DOI 10.1016/0021-8693(75)90106-4
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Martin W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 (1987), no. 3, 477–516. MR 879395, DOI 10.1112/plms/s3-54.3.477
- Martin W. Liebeck, Characterization of classical groups by orbit sizes on the natural module, Proc. Amer. Math. Soc. 124 (1996), no. 10, 2961–2966. MR 1343709, DOI 10.1090/S0002-9939-96-03505-8
- M. Raynaud, Revêtements de la droite affine en caractéristique $p>0$ et conjecture d’Abhyankar, Invent. Math. 116 (1994), no. 1-3, 425–462 (French). MR 1253200, DOI 10.1007/BF01231568
- Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
Bibliographic Information
- Shreeram S. Abhyankar
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Email: ram@cs.purdue.edu
- Nicholas F. J. Inglis
- Affiliation: Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, Al-Khod, Postal Code 123, Sultanate of Oman
- Email: ninglis@squ.edu.om
- Received by editor(s): March 22, 2000
- Published electronically: January 29, 2001
- Additional Notes: Abhyankar’s work was partly supported by NSF Grant DMS 97-32592 and NSA grant MDA 904-99-1-0019
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 2941-2969
- MSC (2000): Primary 12F10, 14H30, 20D06, 20E22
- DOI: https://doi.org/10.1090/S0002-9947-01-02744-1
- MathSciNet review: 1828480