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DISCRETE SERIES CHARACTERS AS LIFTS FROM
TWO-STRUCTURE GROUPS

REBECCA A. HERB

ABSTRACT. Let G be a connected reductive Lie group with a relatively com-
pact Cartan subgroup. Then it has relative discrete series representations. The
main result of this paper is a formula expressing relative discrete series charac-
ters on G as “lifts” of relative discrete series characters on smaller groups called
two-structure groups for G. The two-structure groups are connected reductive
Lie groups which are locally isomorphic to the direct product of an abelian
group and simple groups which are real forms of SL(2,C) or SO(5,C). They
are not necessarily subgroups of G, but they “share” the relatively compact
Cartan subgroup and certain other Cartan subgroups with G. The character
identity is similar to formulas coming from endoscopic lifting, but the two-
structure groups are not necessarily endoscopic groups, and the characters
lifted are not stable. Finally, the formulas are valid for non-linear as well as
linear groups.

1. INTRODUCTION

Let G be a connected reductive Lie group with a relatively compact Cartan
subgroup. Then it has relative discrete series representations. The main result
of this paper is a formula expressing relative discrete series characters on G as
“lifts” of relative discrete series characters on smaller groups called two-structure
groups for G. The two-structure groups are connected reductive Lie groups which
are locally isomorphic to the direct product of an abelian group and simple groups
which are real forms of SL(2, C) or SO(5,C). They are not necessarily subgroups
of G, but they “share” the relatively compact Cartan subgroup and certain other
Cartan subgroups with G. The character identity is similar to formulas coming
from endoscopic lifting, but the two-structure groups are not necessarily endoscopic
groups, and the characters lifted are not stable. Finally, the formulas are valid for
non-linear as well as linear groups.

Two-structures were used in [5] to prove identities for the constants occuring in
Harish-Chandra’s discrete series character formulas. In these formulas the charac-
ter is restricted to the connected component of a Cartan subgroup, and the two-
structures used are those corresponding to a set of real roots determined by the
connected component. Thus there is a different formula for each connected compo-
nent of each Cartan subgroup. These formulas are used in this paper to prove the
lifting formula. The main technical difficulty is to see that all these formulas can
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be combined into a formula which is uniform on all Cartan subgroups and given in
terms of the two-structures of the full root system of G.

Two-structures for G are defined as follows. Let B be a relatively compact
Cartan subgroup of G, that is a Cartan subgroup that is compact modulo the
center of G. Let g and b denote the real Lie algebras of G and B respectively, and
let ® = ®(g,,bc) denote the set of roots of g, with respect to be. Let ¢ be a root
subsystem of ®, that is a subset of ® which is closed under its own reflections, and
hence is a root system with the same inner product as that of ®. Then ¢ is called
a two-structure for @ if it satisfies the following two properties.

(i) Every irreducible factor of ¢ is of type A; or By ~ Cs.
(i) Let ¢ be any choice of positive roots for . Then if w is in the Weyl group
of ® with wpt = ¢ we have detw = 1.

We let 7 (®) denote the set of all two-structures for ®.

The sets 7 (®) for irreducible ® can be described as follows. If ® has one root
length or is of type Ga, then 7 (®) consists of all root subsystems of ® of type
A% where k is the size of a maximal set of orthogonal roots in ®. If @ is of type
By, Cop, k > 1, or Fo, k = 2, then T (®) consists of all root subsystems of ® of
type BE. Finally, if @ is of type Bak+1, Cort1,k > 1, then T (®) consists of all root
subsystems of ® of type B5 x Aj.

The groups G, are defined as follows. Fix ¢ € 7(®). It is a root subsystem of
®. However it need not be closed in ® under addition, and so does not necessarily
correspond to a subalgebra of g. Write ¢ = ¢ U ... U ¢ for its decomposition
into irreducible factors. Then each ¢;,1 < i < k, is closed under addition in ®,
and so corresponds naturally to a simple Lie subalgebra g, of g. This subalgebra
has the property that if b, = b N g, then b, is a Cartan subalgebra of g, and
®((g,)c, (b;)c) = wi, 1 < i < k. We also define

gy=by={H €b:a(H)=0V acp}
Then

k
> bi=b
=0

Let G; be the connected subgroup of G corresponding to g, B; = exp(b;) =
BNG;,0<i<k Let Gy x Gy X ... x Gy denote the abstract direct product of
the groups G;,0 < i < k. Since B; C B,0 <1i <k, and B is abelian, the mapping
f:Bg x..x By — B given by

f(bo,...,bg) = bo...bg, b; € B;,0<1i <k,

is a group homomorphism. Let Zp denote the kernel of this homomorphism. It is
easy to prove that Zp is a central subgroup of Gg X ... X Gg. Define

th = (Go X ... X Gk)/ZB and BQP = (B() X ... X Bk)/ZB

Then G, is a connected reductive Lie group with relatively compact Cartan sub-
group B, and the mapping fp : B, — B induced by f is an isomorphism.
Let g, and b, denote the Lie algebras of G, and B, respectively. Then

2((g,)c. (b,)c) = ¢
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Since all irreducible factors of ¢ are of type A; or Bs, G, is locally isomorphic to
the direct product of an abelian group and simple groups which are real forms of
SL(2,C) or SO(5,C). Note that

k
&p:@z;&
o

can be identified with a subspace, but not necessarily a subalgebra, of g, because
elements from the different subalgebras ¢g. do not necessarily commute with each
other as elements of g. This is because, although roots in different irreducible
factors of ¢ are orthogonal to each other, they need not be strongly orthogonal as
elements of ®. Thus G, can not necessarily be embedded as a subgroup of G.

If @ is spanned by orthogonal roots, then each ¢ € 7(®) has the same rank as
®. Thus if @ is spanned by orthogonal roots and G is semisimple, g, = b, = {0},
so that G, is also semisimple. If ® is not spanned by orthogonal roots, then
rank ¢ < rank ®, and so in this case 9y = by is always non-trivial. Thus even if G
is semisimple, it is possible that G, is not. This is why we work with the class of
reductive groups.

Let SO(®) denote the set of all subsets of ® consisting of strongly orthogonal
noncompact roots. Each S € SO(®) corresponds to a Cartan subgroup Hg of G.
Its Lie algebra satisfies (hg)c = cs(be) where cg is the Cayley transform associated
to S. Further, Hg can be decomposed as Hg = TgAg where Ag is a split group
and Tg is compact modulo the center of G and has identity component T2 C B.
While T's need not be abelian when G is not linear, T4 = T's N B is always abelian,
since B is. We define HY = TdAg. If v € G’ is any regular semisimple element of
G, then there are S € SO(®) and h € H. (not unique) such that v = zhaz~! for
some z € G.

Now for ¢ € T(®), we let SO(p) denote the set of all subsets of ¢ consisting of
noncompact roots which are strongly orthogonal in ¢. Each S € SO(y) corresponds
as above to a Cartan subgroup Hy, s = T, sA, s of G,. In this case we always
have T\, s C B, so that H;’S =H,s.

Let SO(®,¢) = SO(P) N SO(p). Then for S € SO(P, ) we have Cartan
subgroups Hg of G and H, g of Gy. If S; = SN ;1 <4 <k, then

H%S = (HO,SO X HLSl X ... X Hk,Sk)/ZB

where Hy s, = By and H; g, is the Cartan subgroup of G; corresponding to S;,1 <
i < k. Now Hi,Si C Hé,O <4<k, and (ho, h1, ,hk) — hohy...hg, h; € Hi,si,O <
i < k, factors through H, g to give an isomorphism fgs of H, g onto H}.

The isomorphisms fs : H, s — H, S € SO(P, ), can be used to define a
correspondence of orbits between G, and G. For z € G, and g € G, let O,(x) and
Oc(g) denote the orbits of z in G, and g in G respectively. Let x € G, the set
of regular semisimple elements in G,. Then there exist S € SO(¢) and h € H, g
(not unique) such that O, (z) = O, (h). We will say that O, () is a good orbit in
Gfp if § € SO(®,p), that is the roots in S are strongly orthogonal, not only in ¢,
but also in ®. In the case that O,(z) = O,(h),h € Hy g, is a good orbit, we have
the Cartan subgroup Hg of G and the isomorphism fs: H, s — HL. We define

Fp(Op(x)) = Oc(fs(h)).
We prove in §4 that this definition is independent of the choice of S € SO(y) and
h e H, s with Oy (z) = Oy, (h).
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Now that we have a correspondence of orbits between G, and G' we can define
lifting from G, to G. For x € G, write det(t — 1 + Adg(z)) = De(z)t"+ terms of
higher degree, where t is an indeterminate. Then z is regular just in case Dg(x) # 0,
and we write G’ for the set of regular elements. We also write D (z) = D¢, (7),z €
G, for the corresponding function on G,. Let S € SO(®,¢) and h' € H, g such
that h = fs(h') € HL N G'. Then we define

DE(h') = |Dy(h')|2|Da(h)| 2.

Then Dg extends uniquely to a class function on the union of good orbits O, of
G, such that Fi,(O,) is a regular orbit in G.

We can now define a lifting from G, to G as follows. For g € G', let X, (g) denote
a complete set of representatives for the good G, orbits which map to Og(g) under
the orbit correspondence F,,. Let © be a class function defined on Gfp. Now for
g € G', we define

(LiftSO)(g) = > DE(H)O(n).
h'eXo(9)
Since Dg and O are constant on G, orbits, (Liftg@)(g) does not depend on the
choice of X, (g). It defines a class function on G’.

We now turn to discrete series characters. Let Lp denote the set of all 7 € ib"
such that e gives a well-defined character of B, and let pg denote the half-sum of
positive roots in ®. Then A € 0" is a discrete series parameter for G if (A, o) # 0
for all « € ® and A — pg € L. Let A be a discrete series parameter for G and
let ¢ € 7(®). When we identify g, with a subspace of g, we have b, = b. Thus
A is a potential candidate for discrete series parameter of G,. Since ¢ C @, we
have (X, o) # 0 for all a € ¢. Let p, denote the half-sum of positive roots in ¢.
Then A — p, = (A — pg) + (pc — py). Thus X — p, € Lp, = Lp if and only if
pc — py € Lp. If @ is of type Ag,,n > 1, then there is always ¢ € T(®) such that
pa — pp & Lp. However we prove in §5 that if ® contains no irreducible factors of
type Aapn,n > 1, then pg — p, is in the root lattice of ®, and hence always is an
element of Lg. As a consequence of this result we have the following theorem.

Theorem 1.1. Suppose that ® contains no irreducible factors of type Asp,m > 1.
Let \ € ib* be a discrete series parameter for G. Then for every ¢ € T(®), X is
also a discrete series parameter for G,.

Because of Theorem [Tl we will assume that ® contains no irreducible factors
of type Aa,,n > 1. For any discrete series parameter A for G, we let ©, denote the
character of the discrete series representation (actually relative discrete series if G
has noncompact center) of G corresponding to A. Similarly, we let ©F denote the
character of the (relative) discrete series representation of G, corresponding to .

In §6 we will define (and give an explicit formula for) a positive integer ¢(g) for
each g € G’. Tt depends only on the orbit of g in G and is constant on connected
components of Cartan subgroups. We also define signs eg()\) = +1,p € T(D),
corresponding to discrete series parameters of G. The main result of this paper is
the following character formula.

Theorem 1.2. There is a dense open subset G"” of G' so that

Ox(g) =clg) Y. SN(LiftZ0%)(g), g€ G”.
oET (D)
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Since all ¢ € T (®) are conjugate via W(®), the complex Lie algebras (g¢)c are

all isomorphic for different ¢. However, the real forms g and hence the groups
G, can vary with ¢ depending on which roots of ¢ are compact and noncompact.
For a fixed ¢ € T(®), the orbit mapping F,, need not be surjective, and Liftg@f
will be zero on any orbit not in the image of F,,. We need the contributions from
all ¢ € T(®) in order to recover ©y on G.

Theorem is stated more precisely as Theorem 6.4. Although for simplicity
we have only stated it for discrete series characters here, it is also valid for limits
of discrete series. It is proven by first directly computing the lifts of the discrete
series characters ©% using an explicit description of the sets X,(g), 9 € G”, given
in Theorem 4.13. Then the machinery of two-structures and the formula from [5]
expressing discrete series constants on G in terms of two-structures are used to
show that the sum of the lifts is ©,.

Suppose that ¢ contains an irreducible factor of type As,,n > 1. Then there
is an invariant neighborhood 2 of the identity in G with the following properties.
Let ¢ € T(®) and let 2, denote the union of all good orbits in G, which map into
QN G’ via the orbit correspondence F,,. Then for any discrete series parameter A
of G we can define a class function ©% on pr which is a discrete series character of

a two-fold cover of G,. Further, we can define Liftg@f in QN G, and the formula
of Theorem [[.2]is valid for g € QN G".

In the case that G is linear, the work of Shelstad [10] 11, [I2] on endoscopy gives
a formula for discrete series characters in terms of the lifts of stable discrete series
characters on endoscopic groups. The formula in Theorem 1.2 is independent of
this theory. The group G is not required to be linear, two-structure groups are not
necessarily endoscopic groups, and no stable discrete series characters are used. In
the linear case, a lifting formula similar to Theorem 1.2 expressing stable discrete
series characters on GG in terms of stable discrete series characters on two-structure
groups is given in [6]. For an expository account of the results on discrete series
characters in [Bl, 6] and this paper, see [7].

The organization of the paper is as follows. In §2 we review the definition of and
well-known results about the Cartan subgroups Hg, S € SO(®). The main result is
Theorem 2.5 which characterizes which elements h € HL,h' € H,, S, 5" € SO(®),
are conjugate. In §3 we review discrete series character formulas for G, and rewrite
them in a form convenient for lifting. The main theorem from [5] expanding discrete
series constants in terms of two-structures is stated as Theorem 3.4. The definition
of the groups G, and the orbit correspondence are in §4. The main results are
Lemma 4.8 which shows that the orbit map is well-defined, and Theorem 4.13 which
gives an explicit description of the sets X,(g),g € G”, occurring in the definition
of lifting. In §5 we review the theory of two-structures and prove results about
two-structures which will be needed. In particular, we prove in Theorem 5.5 that
PG — Py is in the root lattice of ® in the case that ® contains no irreducible factors
of type Aa,. In §6 we restate and prove Theorem 1.2 as Theorem 6.4, modulo a
technical result about two-structures, Lemma 6.8. This technical lemma is proven
in §7.

2. REGULAR SEMISIMPLE ORBITS IN G

In this section we restate well-known results about regular semisimple orbits in
G in a form that is convenient for discrete series character formulas and the orbit
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correspondence. The main result is Theorem 2.5. Proofs of routine lemmas are
omitted.

Let G be a connected reductive Lie group. Given any subgroup H of G we will
use the corresponding lower case underlined letter i for the real Lie algebra of H,
and he for its complexification. For any root system ®, we let W(®) denote the
Weyl group of .

Let 6 be a Cartan involution of G as in [13] and let K be the fixed point set of
0. In the case that G has compact center, K is a maximal compact subgroup of
G. In general, K contains the center Zg of G and is compact modulo Zg. Now G
has relative discrete series representations just in case rank G = rank K so that G
has a Cartan subgroup B C K. We will assume that this is the case. Then B is
a relatively compact Cartan subgroup of G, that is B is compact modulo Zg, and
is unique up to conjugacy. Let & = @(QC,QC) denote the roots of be in 9c and
O = P(kg,bc) denote the roots of b in k. Roots in @ are called compact
roots.

Since G is reductive, g = z + g, where 2 is the center of g and g, is semisimple.
We also have b = z + b, where b, = b g, For each a € ® we let (9,)c denote
the root space correspondlng to ain (g, )c and write H? for the element of (by)c
satisfying

BHZ) = 2(6,a)/{e, ), V 5 € ®.

For each noncompact o € @ fix a Cayley transform c,. Recall from page 418 of [9]
that we can choose X, € (g )c,Ya € (g__ )c so that

co = Adexp(m/4)(Yo — Xo).

Let SO(®) denote the set of all subsets of ® consisting of strongly orthogonal
noncompact roots. That is, S € SO(®) if S C P\Px and for any a, 3 € S with
a # B {a,f) =0and a+ § ¢ . Each S € SO(P) corresponds to a Cartan
subgroup Hg of G as follows. Define

ts={Heb:a(H)=0V a e S}, QS:ZiRH;-
a€cS

Let ¢s = [[ocs ca- Then Hg is the Cartan subgroup of G with Lie algebra
hg =tg®ag
where

ag = cs(ibg) = Z R(X,+Ys)
a€esS

It satisfies (hg)c = cs(be) since cg is the identity on tg. Define Ts = Hgs N K
and Ag = exp(ag). Then Hg = TsAg. Note that Ts need not be connected. The
identity component 79 of Ts is contained in B, but in general not every connected
component of Ts will lie in B. Write TS1 =TsNB,H = TSIAS. While Ts need
not be abelian when G is not linear, TS1 is always abelian, since B is. Thus H é
is always abelian. When we write h = ta € H é we always mean that ¢t € TS1 and
a € Ag.

Fix t € Td. Since tT$ C B and every o € ® determines a character e* of B, we
can define

Bpg={acd:e(tty) =1V ty € TI}.
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When S is fixed we will also write ®; = &4 g,t € Tsl.

Lemma 2.1. Fiz S € SO(®). Then we have the following.
(i) T: = (Ts N Bs)T2 where Bs = exp(bg).
(ii) TsNBs consists of all elements of the form exp(mi ) g naty) whereng € Z
foralla € S.
(iii) Td ={beB:e*(b) =1V a € S}.
(iv) Forallt € T:, S C ®; 5 and spans Py g.
(v) Forbe Td, eP(b) = esP(b) for all B € .

For §,5" € SO(®), we define S = S if tg =tg. Let v € W(Pk),H € b, and
b = exp(H) € B. Then we write vb = exp(vH). This is well-defined and gives
an identification of W(®g) with W(G, B) = Ng(B)/B. Let G’ denote the set of
regular semisimple elements of G.

Lemma 2.2. (i) Let S,5" € SO(®). Then Hg is conjugate to Hg: in G if and
only if there is v € W(®g) such that S’ = vS.
(ii) Given any x € G’ there are S € SO(®) and h € H such that Og(z) =
Oc¢(h).

Lemma 2.3. Let S,5 € SO(®) with Cayley transforms cs,cs respectively. Let
h=taec HLNG I =td € H, NG,

(i) Suppose there is v € G such that thx~! = h'. Then there arev € W (®g),s €
W(®,), such that t' = vt, S' = vS, loga' = cs/vscgl loga, and Ad(x)H =
cs/vscng for all H € hg.

(i) Suppose that there are v € W(Pk),s € W(P,), such that ¢ = vt, S’ =vS,
and loga’' = cs/vscgl loga. Then there is x € G such that h' = xhx~! and
Ad(x)H = cgrvscg' H for all H € hg.

For S,S5" € SO(®),t € Td, we will write S’ =, S if S’ = S and t € T4,. In this
case we have tT9 = tTg, so that ®, g = ®; g». By Lemma 2.1, S’ =; S if and only
it ' C @, 5 and spans @, g.

Lemma 2.4. Fiz h = ta € HL,v € W(®k),s € W(P,), and S’ € SO(P) such
that v=1S" =, S. Then there is an element h' =t'a’ € H, given by

t' =wt, loga’ = cgvscg' loga.

For S € SO(®),h = ta € H}, we will let Wy(h) denote the set of all u €
W(®g) N W(®;) such that ut = t. Then for (v,s),(v',s") € W(Pg) x W(P,),
we will say (v,s) ~ (v/,s') if there is u € Wy(h) such that v/ = vu,s’ = uls.
This gives an equivalence relation on W(®g) x W(®;) and we write [v, s] for the
equivalence class containing (v, s) and W (®g, h) for the set of equivalence classes.

We write w = 1 for the equivalence class [1, 1].

Remark 2.1. In Lemma 2.7 of [7] we prove that Wy(h) = W (®g) N W(P,) if and
only if h is central in Hg. Of course if all Cartan subgroups of G are abelian, as is
the case when G is linear, then this implies that Wy(h) = W(®x) N W (®P,) always.
Thus in this case we can identify W(® g, h) with the set of all w € W(®) such that
there are v € W(®g),s € W(®D;) such that w = vs. However when Wy(h) is a
proper subgroup of W(®x) N W(®;), W(Pg, h) cannot be identified with a subset
of W(®).
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Let v € W(®g) and S’ € SO(®) with v=15" =, S. Then for any u € Wy(h),
we also have (vu)~1S’ =; S since t = u~'t € uwIT g = T;—lv—ls" Thus we can
write A(h) for the set of all pairs (w,S’) such that w = [v,s] € W(®g,h),S" €
SO(®), and v~ 18" =, S. Note that for any w = [v,s] € W(®xk,h), (w,vS) € A(h).
However there may be other S’ € SO(®) with (w,S’) € A(h).

Let (w,S”) € A(h), and let (v,s) € W(®Pg) x W(®P;) such that w = [v,s]. We
will write b’ = (w, S’) - h for the element h' = ta’ € H}, given as in Lemma 2.4 by

t' =wt, loga' = cgvscg'loga.

This definition clearly does not depend on the representative (v, s) for w.

Note that A(h) depends only on the connected component hHg of h in Hé In
fact, as a consequence of Lemma 2.3 (ii), we see that for (w,S’) € A(h) there is
x € G such that (w,S’) - hy = zhyz~! for all hy € hHY.

For any = € G, we let Og(x) = {grg~' : g € G} denote the orbit of = in G.
Using the above notation, we can rewrite Lemma 2.3 as follows.

Theorem 2.5. Let S € SO(®),h € HLNG'. Then

Octh)n( |J Hs)={(w,8) h:(w58)eAh)}
S'€SO(®)

Lemma 2.6. Let S € SO(®),h = ta € H;NG'. Fiz (w,S") € A(h), and let
B o= td = (w,8)  h. Let (v,s) € W(Pk) x W(P,) such that w = [v,s].
Then w=! = [v=YvsT w1 € W(®g,h'),(w™t,S) € A(R) and h = (w™1,8) - 1.
Further, suppose (w',S") € A(h') and let (v',s") € W(Pk) x W(Py) such that
w = [v,s]. Then w'w = ['v,071s'vs] € W(®k,h), (ww,S") € A(h) and
(w',8")-n = (ww,8") - h.

In order to prove the lifting theorem we will need to restrict to a dense open
subset of H: N G’. Define

(21) Hi={hec HiNnG : if (w,S) € A(h) and (w,S) - h = h, then w = 1}.

Remark 2.2. HY can be a proper subset of H{ N G’. For example, suppose that G
is a simple group of adjoint type with ® = {+a} of type A;. Then B = Hy consists
of all elements of the form b(s) = exp(isH?) and b(s) = 1 just in case s € 7Z.
Further, W (®g,b) = W(®g) and A(b) = {(w,d) : w € W(Pk)} for all b € B.
Suppose that G is noncompact. Then ®x = (), so that B” = BN G’'. However, if
G is compact, then @ = ® and the reflection sq € W(Pg). Now b = b(7/2) is
regular since exp(a)(b) = —1, but (sq,0) - b= b(—n/2) =b. Thus b ¢ B”.

Lemma 2.7. Let S € SO(®). Then HY is a dense open subset of HL N G'. It is
the set of all h € HY such that Cc(h) C Hg.

Proof. The first statement is routine. The second follows easily from Lemma 2.3.
O

Remark 2.3. Suppose that G has abelian Cartan subgroups. Then Hg C Cg(h)
for all h € HL. Thus in this case h € HY if and only if Cg(h) = Hs. When G
is the set of real points of a linear algebraic group G, an element g € G is called
strongly regular if its centralizer in G is a (connected) torus. Suppose that h € H é
is strongly regular. Then its centralizer in G is the set of real points of a torus of
G, and hence must be equal to Hg. Thus h € Hg.



DISCRETE SERIES CHARACTERS 2565

3. DISCRETE SERIES ON G

In this section we review discrete series character formulas and rewrite them
using the notation of §2. In the case that G has noncompact center these are really
relative discrete series, but this will play no role in the arguments, so we will just
use the term discrete series. For more details see [5, (7, [9].

Fix a choice ®* of positive roots for ®, and define

pa :p(@*):% > a

acdt
Let Lp denote the set of all 7 € E = ib" such that exp(r) is well-defined on B.
Recall that A € ib" is called a discrete series parameter for G if

A—pg € Lpand (\,a) 0V a € D.
Further, A € ib" is called a limit of discrete series parameter for G if it is not a
discrete series parameter, but A — pg € Lp. Let
E'(®)={re€E:{(r,a) #0Va € ®}.
For any connected component E* of E'(®), define
(@ 1 EY) = eq(E*) =sign [] (a,7), TeEE
acdt

Fix a discrete series or limit of discrete series parameter A of G. If X is a
discrete series parameter, let E* = E*(\) denote the connected component of
E'(®) containing A. If A is a limit of discrete series parameter, let E* = E*()) be
a fixed connected component of E’'(®) such that X is in the closure of E*()).

Write

AG@T:b)=Ag0b) = [ A—e (1), beB,
acdt
and define

gc = 3 dim(G/K).

Then as in [T], 2] [8], when A is a discrete series parameter there is a unique (relative)
discrete series representation of G with character ©, given on regular elements
be B by

OA(bD) = eq(E*) (1) AL(B)™H Y detw e PG (b).
vEW (PK)
Note that although e (E*), AL (b), and pg all depend on the choice T of positive
roots, the character ©) is independent of this choice.
Now let S € SO(®) with corresponding Cayley transform cg and Cartan sub-

group Hg. Then cg®™ gives a choice of positive roots for fIJ(gC, (hg)c). For
h € Hg, define

AG@T h)=Ag(h) = J[ 1-e(h).

a€cgPt

For h = ta € HE, let
®h(h) ={a € ®; :a(cg' loga) > 0}.
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Define @ = P NP;. Then W(Pg ) C Wo(h) = {u € W(Pxg)NW (D) : ut = t}.
It is possible that W (®g ¢) is a proper subgroup of Wy(h). Define

(K, h) = [Wo(h)/W(Pk )]
Lemma 3.1. For all h=ta € HY NG’ we have

eq(E*) (=1)% AlL(h) ©x(h) = c(K,h detv " P9 (¢t
G
vEWL (M) \W (P x)

X Z det s c(s : vE* : ®f(h)) exp((svA — pg)(cg ' loga)).
SEW (®y)
Here the constants c(s : vE* : @5 (h)) are defined as in [5).
Proof. We will use formula (2.6) from [5], which is a restatement of
Harish-Chandra’s formulas from §23 of [I]. In [5] the results are only stated for
the semisimple finite center case, but as in [§] the formulas are also valid for the
general case. Note that in [5] ©, was defined without the terms eg(E*) (—1)%
and was only a character up to sign. The root system ® in [5] is our ®;. Thus in
our notation we can rewrite formula (2.6) of [] as
(E7) (“1)O AL Ox(h) = 3 detw e o
vEW (Pk ) \W(PK)

X Z det s c(s: vE* : ®}(h)) exp((sv) — pg)(cg' loga))
SEW (®4)

= Z Z det(uv) e**=Pe (t)

UEWQ(]'L)\W(@[() uEW(CPK,t)\WO(h)

X Z det s (s : wwE* : ®}(h)) exp((suv) — pc)(cg'loga))
SEW (®4)

= Z Z detv e A=re (1)

’L)EWo(h)\W(q)K) uEW(‘I)K’t)\Wo(h)

X Z det s c(su™" : wvE* : ®L(h)) exp((svA — pg)(cg ' loga)).
SEW (®4)

Fixu € W(®x)NW (P;) and define ¢ : &, — &, by ¢(a) = ua. Since u®g = Pg
and u®; = @y, u® g = Px 4. Further, for s € W(®,), syp~! = usu~!. Thus using
(3.1),(3.6) of [5] we have

c(s:vE* : ®F(h)) = clusu™ s wwE* :udf(h)) = c(su™t s wwE* : D5 (h)).
Further,
UATRG () = ARG () = A PE () eee e (1),

But pg is a weight for ® and hence ®;, so that upg — pa is in the root lattice of
®;. Thus "¢ =96 (t) = 1. Now if u € Wy(h) C W (@) NW (D), we have u=t =t
so that

R O]
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When A is a limit of discrete series parameter, we define ©, using the formula
in Lemma 3.1, noting that it depends on the fixed choice of E* = E*(\). We
can simplify the notation of Lemma 3.1 as follows. Let 7 € Lg. Then for any
h =ta € HL we write

& (h) = e (t) exp(r(cg' loga)).
Let w = [v,s] € W(®g, k), and pick S’ € SO(®P) such that (w,S") € A(h). (Recall

that such an S’ always exists since we can always take S’ = vS.) Then we define

&(w-h) =&((w,8") - h), Ag(w-h) = Ag((w,S') - ),

f(w - h) = Bh((w, S) - h).

It is easy to check that & ((w,S’) - h), A ((w,S") - h), and ®5((w,S’) - h) are
independent of the choice of S’. Thus & (w - h), Al (w - h), and ®F(w - h) are well-
defined. We also define detw = detvdets, and for A € ib*, we write wA = vsA.
These definitions are clearly independent of the choice of representative (v, s).
Lemma 3.2. Let w = [v,s] € W(®k,h), h =ta € HL.

(i) For any T € Lp, &-(w-h) =¢e* " (t) exp((s™tv™17)(cg " loga)).
(ii) For any o € @, {o(w - h) = Eg—1,-14(h).
(iii) Ag(w-h) =detw &, -1, (R)AgL(h).
(iv) <I>+(w h) = wd%(h).
(v) e(s7tivT B @L(h)) = c(1: E* : @ (w - h)).
Proof. Parts (i)-(iv) are routine. Using part (iv),
c(1: E*: ®f(w-h)) =c(l: E* : vs®h(h)).
Now define v : vs®; — s®; by ¥(a) = v ta. Then ¥(vs®; N Pg) = s&, N Pk so
that using (3.1). (3.6) of [3],

c(1: E* :vs®f(h) = c(1: v E* : s®L(h)) = c(s™t v LE* 1 @ (D).

Theorem 3.3. Let h € H-NG'. Then
ec(E*) (=1)7¢Ox(h)

=c(K,h) Y Ag(w-h)h & pe(w-h) (1 BT Of(w-h).
weW (P ,h)
Proof. Using Lemma 3.1 and the change of variables s +— s~ 1 v — v~! we can

write

eq(E*) (=1)%0,(h) = ¢(K,h) AL (h)~ > det w

w=[v,s]EW (P ,h)
x eV Apa (t) e(s™t v B L ®h(R)) exp((sT TN — pg)(cg ' loga)).
Let w = [v,s] € W(®g, h). Then by Lemma 3.2(iii) we have
Ag(w-h) ' = AL(h)Hdetw Ep-1pg—pe ().
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Since w™!pe — pg is in the root lattice of ®, we can use Lemma 3.2(i) and (ii) to
write

fw‘lpc—pc (h)@\—pc (w-h) = Ex—wpe (w - h)
= e A7 () exp((sT 0TI — po)(c5 loga)).
But pg — spg is in the root lattice of ®; so that
eV ATsa () = eV APe (1),

Combining this with Lemma 3.2(v), we have

Z AG(w-h)t & pg(w-h) e(l: E*: &L (w - h))
weEW (Pk ,h)
= AL(h)? 3 detw ¥ APG(¢)
w=[v,s]EW (P ,h)

x c(s™t v E* 1 @f(h)) exp((sT v A — pg)(cg! loga)).
O

The constants appearing in the discrete series character formula of Theorem 3.3
are of the form ¢(1 : E* : ®;) where ®; is a root system spanned by strongly
orthogonal noncompact roots, ®; is a choice of positive roots for ®;, and E* is a
connected component of E'(®). These constants satisfy the following identity. See
[5] for details.

Let 7 (®;) denote the set of all two-structures for ;. We will say ¢ € T (P;) is of
noncompact type if ¢ is spanned by a collection of strongly orthogonal noncompact
roots of ®,, that is there is S’ € SO(®) such that S’ C ¥ and spans ¢. This is
equivalent to the condition that all long roots of 1 are noncompact in ®;, where by
a long root of ) we mean any root in an A; factor and any long root in a By ~ Cy
factor. Write 7,,(®;) for the two-structures of noncompact type for ;.

The following theorem is proven in [5]. It contains signs e(¢) : ) = +1 corre-
sponding to a choice of positive roots ®; for ®; and 1 € 7(®;). The definition of
these signs is given in (5.1). It also contains a constant ¢(®;) which is defined as
follows. For any ¢ € 7 (®;), L(®;) C L(¢) where L(®;), L(¢)) denote the weight
lattices of @, and 1 respectively. Let

(3.1) (@) = [L(¢) « L(®y)].

It is independent of the choice of v since all ¢ € 7 (®;) are conjugate via W (D).
Its values for ®; irreducible are given by the following table, which also gives the
type of ¥ in each case.

®, | Ban | Bont1 | Con| Congr | Don | E7 | Es | Fu | Go
O | By | By xBy | C§ |C5 xCr | Ay | AT | A5 | B | A7
(@) 2 T 2 1 T (2 TP [2F | 2] 2

Theorem 3.4. Let E* be any connected component of E'(®) and let ®; be any
choice of positive roots for ®.. Then
c(1: E*: ®f) = (D) Z e(p: @) e(1: E* :pn®}).
YeET, (P)
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4. DEFINITION OF th AND THE ORBIT CORRESPONDENCE

Let ® be any root system. Then a root subsystem ¢ C @ is called a two-structure
for @ if it satisfies the following two properties.

(i) Every irreducible factor of ¢ is of type A; or By ~ Cj.
(i) Let ¢ be any choice of positive roots for . Then if w € W(®) with wpt =
©+ we have detw = 1.

Let 7(®) denote the set of all two-structures for ®.

Note that ¢ € T(®) is a root subsystem of ®, that is a subset of ® which is
closed under its own reflections. It is not necessarily a subroot system. That is,
there may be «, 3 € ¢ such that a + 3 € @, but a + 8 € . However, let g be
an irreducible factor of ¢, and let ®3 denote the intersection of ® with the linear
subspace of 0" spanned by ¢g. Then ®q is a subroot system of ® with the same
rank as ¢g. Since there are no root sytems of the same rank properly containing a
root system of type A; or Ba, we must have ¢y = ®¢. Thus g is a subroot system
of @.

We want to associate to every ¢ € T(®) a group G, which shares certain Cartan
subgroups with G. Fix ¢ € T(®), and write ¢ = 1 U ... U gy, for its decompo-
sition into irreducible factors. Each ;,1 < i < k, is a subroot system of ¢ and
corresponds to a Lie subalgebra g, of g as follows.

As in §2, for each o € @ we have the root space (g_)c and the normalized root
vector HY € (b,)c. Now define

(b)c= > CH:, b=bn(b)c= > RiH;

acy; acp;

(9)c=@)c+ > (g.)c: g,=gN(g,)c-
acy;
Let o be the involution of 9c with fixed points g. For each o € ® we have
a? € ® defined by
o’ (H) = alcH), H € be.
Since a takes pure imaginary values on b, we have a° = —q for all @ € ®. Thus
for all a € P,

o(Hy)=Hs =H-,, o((g )c)=1(g9,.)c=(g_,)c

Za «
Thus (g,)c is stable under o. Now the restriction of o to (g;)c is an involution
with fixed points g.. Thus g is a real form of (g,)c.
Since ¢; is of type Ay or By ~ C3, (g,)c is isomorphic to either sl(2,C) or

50(5,C) =~ sp(4, C). Thus g, is isomorphic to one of
sl(2,R), su(2), s0(3,2), so(4,1), or so(5).
We also define
gy=by={H €b:a(H) =0V a€p} and po=10.

Let G; be the connected subgroup of G corresponding to 9, K, = GiNK,
B; =exp(b;) = G; N B. Let Gy X G1 X ... X G}, denote the abstract direct product
of the groups G;,0 <i < k, and define f: Gy X ... x Gy, — G by

f(90, s 9%) = go---gk, 9i € Gi, 0 <@ < k.
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Here gg...gx denotes the product in G of the elements ¢g; € G; C G. Note that
f depends on the ordering of the irreducible factors ¢;,1 < ¢ < k, and is not
necessarily a group homomorphism, since elements from the different subgroups G;
do not necessarily commute with each other as elements of G. This is because,
although roots in different irreducible factors of ¢ are orthogonal to each other,
they need not be strongly orthogonal as elements of .

However, since B; C B,0 < i < k, and B is abelian, f : By X ... X By — B is
a group homomorphism. Let Zp denote the kernel of this homomorphism, and let
Z; denote the center of G;,0 < i < k. The following lemma is easy to check

Lemma 4.1. f: By Xx...x By — B is surjective and Zp C Zg X ... X Zy, is a central
subgroup of Gg X ... X Gg.

Define
(41) th = (Go X ... X Gk)/ZB, KLP = (Ko X ... X Kk)/ZB,
(42) B¢:(Bo><...><Bk)/ZB, Z@:(Zox...ka)/ZB.

Then G, and K, are connected reductive Lie groups, B, is a Cartan subgroup of
both G, and K, and Z, is the center of G,. The Lie algebra 9,= Zf:o g, of Gy
can be identified with a subset, but not necessarily a subalgebra, of g. Note that
each g, is stable under the Cartan involution 6 of g so that the restriction of 6 to
G; is a Cartan involution of G;. Further, K; is the set of fixed points of 6 in G;.
Thus 6 induces a Cartan involution of G, with fixed points K.

Let exp denote the exponential mapping from g into G, and expw denote the

exponential mapping of g, into G,. The Cartan subalgebra b = Zz 0b; can be
identified with the Lie algebra of B, and is a Cartan subalgebra of 9, and k.
Further,

‘b((ﬂg)cabc) =, P((ky)c bc) = v =N Pk.

The Weyl group W (g ) generated by reflections in the compact roots g = NPk
of ¢ is naturally a subgroup of W(® ). For H € b,b = exp,(H),v € W(pk), define
vb = exp,,(vH). The following lemma is also routine.

Lemma 4.2. (i) The mapping fp : B, — B induced by f is an isomorphism.
(ii) fB(exp,(H)) = exp(H) for all H € b.

(iii) fp(vb) =vfg(b) for allb € By, v € W(pk).

(iV) Zag C fB(Z¢).
(v) K,/Z, and B, /Z, are compact.

We have seen that G, together with the subgroups K, and B,, satisfies the same
hypotheses as our original group G with its subgroups K and B. Thus the results
of §2 and §3 can be applied to the group G.,.

Remark 4.1. Suppose that & contains no irreducible factors of type B,,n > 3,
or Fy. Then for any ¢ € 7(®), roots from different irreducible factors of ¢ are
strongly orthogonal. Thus for 0 < i # j <k, G; and G; commute inside G. Hence
f 1 Go x ... x G — G is a group homomorphism, and it is easy to see that the
kernel of f is Zp. Thus G, is embedded as a subgroup of G in this case.
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Now for ¢ € T(®) as above, we let SO(p) denote the set of all subsets of ¢
consisting of noncompact roots which are strongly orthogonal in ¢. Since px =
@ N ® g, noncompact roots in ¢ are also noncompact in ®. Further, the inner
product on ¢ is the restriction of the inner product in ®. However, for o, 8 € ¢
with {(«a, 8) = 0, «a strongly orthogonal to § in ¢ means that a + 3 & ¢, while «, 8
strongly orthogonal in ® means o &+ 5 ¢ ®. Thus SO(p) need not be a subset of
SO(D).

For each noncompact root o € ¢ C ® we have the fixed root vectors X, Y, used
to define the Cayley transform c,. Then since X,,Y, € (g(p)c,

Coa = Adexp¢(w/4)(Y(y - Xa)

is a Cayley transform defined on (gw)c. Now each S € SO(y) corresponds as in
§2 to a Cartan subgroup Hy, 5 = Ty, 54, 5 of G, with Cartan subalgebra h,, g.
Let S; = SNg;,0 < i < k. Then S = |J; Si, and each S; is a set of strongly
orthogonal noncompact roots in ¢;. Thus S; corresponds to a Cartan subgroup
H;s, =1T;s,As, of G;. Since Zp C Zy X ... X Zy, it is contained in every Cartan
subgroup of Gy X ... X G, and

H¢,S = (HO7SO X ... X Hk,Sk)/ZB-

Lemma 4.3. (i) For any S € SO(¢) and 0 < i <k, Tj s, C B;. Thus T, s C B,.
(i) Let S € SO(p) and h =ta € Hy, 5. Then

Wipr) NW(er) = W(pk,).

Proof. For i = 0, Gy = By is abelian, and Sy = 0,7 s, = By. For 1 <i <k, G;
is locally isomorphic to one of SL(2,R), SU(2),S0(3,2),50(4,1), or SO(5). Tt is
trivial that these properties holds for the compact groups and easy to check that
they hold in the other three cases. They are also independent of local isomorphism
class. |

Every Cartan subgroup H, of G, is conjugate to one of the form H, 5,5 €
SO(p). However if the roots in S are not strongly orthogonal as elements of @,
H, s will not correspond to a Cartan subgroup Hgs of G. This is because the
groups A; g, will not commute with each other, and so the restriction of f to
(H1,s, X ... X Hy,g,) is not a group homomorphism. Thus we restrict our attention
to strongly orthogonal sets in

SO(®,p) = {S € SO(®) : S C ¢} = SO(®) NSO().

Lemma 4.4. Let S,5" € SO(y) such that H, s and H, s are conjugate in G,.
Then S € SO(®, ) if and only if S’ € SO(D, p).

Proof. Since H, s and H, g are conjugate in Gy, by Lemma 2.2 there is v €
W (k) such that vS = §’. Since W(pg) C W(Pk), we know that S € SO(P)
if and only if vS € SO(®). Thus it suffices to show that for S, S’ € SO(p) with
S’ = S, we have S € SO(®) if and only if S’ € SO(®). But ¢ is the union of
irreducible factors ; of type A1 or Bs, and it is easy to see for these two cases that
if S;, 5] € SO(y;) with S; = S, then S; U—S5; = S/U—S!. Thus if S = 5’, we have
SU—-8§=5U=5" Thus S € SO(®) if and only if §" € SO(P). O

Recall that 9, is a subset, although not necessarily a subalgebra, of g. However,
we have the following easy lemma.
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Lemma 4.5. For S € SO(®,¢), Q%S = hg, and cp,,sH = csH for all H € be.

Because of Lemma 4.5 we will drop the subscripts ¢ and write hg and cg for the
Cartan subalgebra and Cayley transform corresponding to S € SO(®, ¢) in either

g or g(p'

Lemma 4.6. Let S € SO(®,p). For each 0 <1i <k, H; g, is a subgroup of HL.
Further, the homomorphism fs : Hy, s — Hé induced by f is an isomorphism. It
satisfies fs(exp,(H)) = exp H for all H € hg.

Proof. By definition, Hs = Cg(hg). Fix 0 < i < k. Then H; g, = T; 5, 4i s, =
Cg,(h;s,). Clearly A; s, = expa; s, C expag = Ags. Let t; € T; 5,. We know
t; centralizes h; g,. We must show that it centralizes h; g = for all j # i. But
by Lemma 4.3, t; € B;. Thus it centralizes ﬁj,sj C b. Now s, is generated by
elements of the form Xz +Ys,6 € S;. Now ¢; € B; = exp(EaEwi iRHY), and
B(H}) =0forall 5 € Sj,a € p;. Thus t; centralizes a4, We have seen that H; g,
centralizes all of hg so that H; s, = Cg,(hg) = G; N Hs C Hg. By Lemma 4.3, we
in fact have H; s, = Ti,SiAi,Si C (TS N B)AS = Hé
Since H é is abelian we know that

. 1
f : HO,SO X ... X Hk,Sk — HS

is a group homomorphism. Suppose that (hg, ..., hx) is in the kernel of f. Write
hi; = tia; where t; € T; g,,a; € Ai s,. Then f(ho, ..., hx) = to...tgao...ar, = 1 implies
that tg....t; = 1 and ag...ar = 1. Since t; € B;, this implies that (to,...,tx) € Zp.
But since Ag = Ao,s,..-Ak,s, is a direct product, ag...ar = 1 implies that a; =
1,0<: < k. Thus (ho, ...,hk) = (to, ...,tk) € Zp.

We have shown that fs : H, ¢ — H{ is injective. Now suppose that h = ta € Hé
where t € T N B and a € Ag. Since Ag = Ay s,..-Ak,s, is a direct product, there
are unique a; € A;5,,0 < i < k, such that a = ag...ax. Since t € B = By...By,
there are (not necessarily unique) b; € B;,0 < i < k, such that ¢ = bg...b;,. Let
0 <i<k. Then t = by...by € Ts centralizes hg and hence ﬁz‘,s,n But as above, for
each 0 < j # i < k, every b; € B; centralizes ﬁz‘,s,n Thus b; centralizes hi,Si and
hence is an element of H; 5, N B; = T; g,. Thus h; = bja; € H; 5,,0 <i <k, and
f(ho, ..., hg) =ta = h. Thus fg is surjective.

Finally, for any H =) ., Hi € hg,

fs(exp<p(H)) = f(exp(Hy),...,exp(H})) = exp(Hy)...exp(Hy) = exp(H).

O

Let S € SO(¢),h =ta € H, 5. By Lemma 4.3 (ii) we have W (px) N W () =
W(pk). Thus ut =t for all u € W(pxr) N W(p:) so that Wy(h) = W(pr) N
W(pt) = W(pk,t). Thus if we define
Wier,h) = {[v,s]: (v,s) € W(pr) x W(ei)}

as in §2, we have [v,s] = [¢/,¢'] if and only if vs = v’s’. Thus we can identify
W(pk,h) with the set of all elements w € W (p) such that w = wvs for some
v € W(pk),s € W(p). Asin §2, for 5,5 € SO(p),h = ta € H, 5, we will
write S" =, Sif & = S and t € T,s. We let A(p,h) denote the set of all
pairs (w,S’) such that w = vs € W(pk,h) and v 15" =, S. For h = ta €
Hy, s, (w,S") € A(p,h),w = vs, we define (w,5")-h =h" =t'd € H, s where
t' = vt,log, a' = cgrwegt log,,(a). It is easy to check the following.
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Lemma 4.7. Let S € SO(®,¢),h' =t'd’ € H, s,h =ta = fs(h').
(1) Yy = gOﬂq)t
(i) Let (w,S8") € A(p,h') and write w = vs,v € W(pk),s € W(pp). Then
S e SO(®,¢) and v=18" = S.

Let S € SO(®,¢),h = t'd’ € Hys,h = ta = fg(h'). Then by Lemma 4.7
(i), W(pr) € W(P;). Thus for every v € W(pk),s € W(pw), we have (v,s) €
W(®g) x W(®P;). Suppose that v,v" € W(pk),s,s € W(py), such that vs = v's’.
Then there is u € W(px) N W(pr) = W(pk,y) C W(Pk,) C Wo(h) such that
v = vu,s’ = uls, and so [v',s'] = [v,s] as elements of W (®g,h). Thus vs —
[v, s] gives a well-defined mapping from W (px,h') into W(Px,h). Suppose that
[v,s] = 1. Then v = s71 € Wy(h). In particular, vs = 1. Thus the mapping
from W(pk,h') into W(®k,h) defined by vs — [v,s] is injective. We will use
this mapping to identify W (pg,h') with a subset of W (® g, h). Now let (w,S’) €
A(p, h'),w = vs. Then by Lemma 4.7 (ii) we have S’ € SO(®, ), and v~ 18" =, S.
Thus ([v, s],S") € A(h). Thus we can also identify A(p, h’) with a subset of A(h).

Let Gfp denote the set of regular semisimple elements of G,. For any = € G,
let O,(x) denote the orbit of z in G.,.

Lemma 4.8. Let S,5" € SO(p),h € HysNG,,h' € Hys0 NG, such that
Ou(h) = Ou(h'). Then S € SO(®,p) if and only if S' € SO(P,p). Further,
in the case that S, 5" € SO(P,¢), then Og(fs(h)) = Oa(fs/(h')). Finally, let
S eSO(®,p),h€ Hys,(w,S") € Alp,h). Then fs((w,S")-h) = (w,5)- fs(h).

Proof. Since Oy(h) = O, (h'), H, s and H, g are conjugate in G,. Thus by
Lemma 4.4, S € SO(®) if and only if S’ € SO(P).

Assume that S,5" € SO(®,p). Write h = ta € Hy, g,h' =t'a’ € Hy, g. Since
O, (h) = O, (h') we can apply Theorem 2.5 to the group G, to conclude that there
are v € W(pk),s € W(p:) such that (vs,S") € A(p, h) and b’ = (vs,S’) - h. Then

t'=wt, §'=0S, log,d = csvscy' log,, a.

Now we can write fs(h) = fg(t)fs(a) where fg(t) € T& is the image of t €
Ty,s C By under the isomorphism fp, fs(a) = exp(log,a) € As and fsr(h) =
fB(t") fs:(a') where fp(t') € T4, fs(a’) = exp(log,a’) € Ag:. Now by Lemma
4.2, when we consider W (pk) as a subgroup of W (@), fg(t’) = fe(vt) = vfp(t).
Further

log(fs:(a’)) = log, a' = csrvscg” log,a = csrvscg ' log(fs(a)).
Thus fs/(R') = ([v,s],5") - fs(h), and by Theorem 2.5, fs(h) and fs/(h') are con-
jugate in G.
Finally, let S € SO(®,¢),h € Hy g, (w,S") € Alp,h). Write w = vs and
(vs,S") - h =1t'a’. Then by the above argument, fs/(h') = ([v,s],5) - fs(h). O

We will use the isomorphisms fs : H, s — HL, S € SO(®,¢), to define a
correspondence of orbits between G, and G. Let v € Gfp. Then there exist S €
SO(yp) and h € H, s (not unique) such that Oy(y) = O,(h). We will say that
Oy(7) is a good orbit in G, if S € SO(®, ). In the case that Oy (7) = Oy (h), h €
H, s, is a good orbit, we have the Cartan subgroup Hg of G' and the isomorphism
fs: Hy s — Hg given by Lemma 4.6. We define

(4.3) Fp(Op(7)) = Oc(fs(h))-
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By Lemma 4.8, the definitions of good orbit and the mapping F,, are independent
of the choice of S € SO(p) and h € H, g with O, (y) = O, (h).

Fix S € SO(®) and h € HL N G'. Define

W(Pk,p,h) ={w e W(Pk,h):3S" € SO(P, ¢) such that (w,S’) € A(h)}.

The following two lemmas are an easy consequence of Theorem 2.5 applied to G
and G,.

Lemma 4.9. Let w € W(®g, , h) and suppose that S’, 5" € SO(®,¢) such that
(w,S8"), (w,S"”) € A(h). Then
Op(f5' (w,8") - 1)) = O (f5 (w, S") - ).
For w € W(®g, ¢, h), we will write

Olp,w-h) = Oy (f5' ((w,8") - h))
where S’ € SO(®, ¢) such that (w,S’) € A(h). By Lemma 4.9, it is independent of
the choice of S’.
Lemma 4.10. Let S € SO(®) and h € HL NG'. Then
F 1 (0g(h) = {O(p,w-h) 1w € W(Pk,, h)}.

For w € W(®xk, p, h), let S” € SO(P, ¢) such that (w,S’") € A(h). We will write
W (pk,w-h) =W (pk,h') where b’ = f5'((w,S")-h) € Hy 5. By Lemma 4.7 and
the remark preceding Lemma 2.4, pg/ ¢ = ¢ N ®gr 4 is independent of the choices
of S, so that W(pk,w - h) is also independent of this choice.

Let w1 € W(®xk,p,h),w € W(pk,wr - h). Then there is an element ww; €
W(®g, h) defined as in Lemma 2.6.

Lemma 4.11. Let w1 € W(®g,p,h). Then for any w € W(pg,w; - h),ww; €
W(Pk,p,h).
Proof. Write wy = [v1, s1] where vy € W(®g) and s; € W(®;) and w = [v, s] where
v € W(pk),s € W(pN®,¢). Then as in Lemma 2.6 we have

ww, = [vvl,vflsvlsl]

where vv; € W(®g) and v 'svisy € W(®;). Let S; € SO(®,¢p) such that
(w1,S51) € A(h). Since S1 € SO(®,p) and v € W(pk),vS: € SO(P,¢). Since
S| =wv1S and vt € Tslvl, then vS; = vvy.S and vuit € Tu151~ Thus (wwq,v51) € A(h)
and so ww; € W(Pg, @, h). O

We want to characterize exactly which of the orbits O(p,w - h),w € W(®, ¢, h),
are equal. For this we need an extra regularity condition. Recall that in (2.1) we
defined

HY={he H NG :if (w,S) € A(h) and (w,S)-h = h, then w = 1}.
Let wy,wy € W(P@g, ¢, h). Then we write ws ~o.h W1, OF more simply wy ~ wy, if
there is w € W(px, w1 - h) such that wy = ww;.
Lemma 4.12. Let h € Hg.
(i) Let wi,wy € W(®g,p,h). Then
O(p,w1 - h) = O(p,ws - h)

if and only if wa ~, p wi. In particular, way ~, p w1 5 an equivalence relation
on W(®,¢,h).
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(il) Let w;,1 < @ < p, be a complete set of representatives for the equivalence
classes in W(®x,p, h) given by ~, . Let 0 € W(Pg,p, k). Then there are
unique 1 < i <p and w € W(pk,w; - h) such that o = ww;.

Proof. (i) Let S1,S2 € SO(®, ¢) such that (w;, S;) € A(h),i =1,2. Write
hi = fs (wi, Si)-h),  i=1,2.
Then by definition
O(p,w; - h) = O¢(f;1((wi, Si)-h)) = O¢(h;), =12

By Theorem 2.5, O, (h}) = O,(hb) if and only if there is w € W(pk,h}) =
W (pk,ws - k) such that (w,S2) € A(p, h}) and by = (w,S2) - h}. Now by Lemmas
2.7 and 4.8, hl, = (w, S2) - b if and only if

h=(wy",8) (w2, 82)  h=(wy",S) - fs,(hy)
= (w3, 8) - (w, 82) - fs,(h}) = (w3 'w, 8) - (w1, 1) - h = (wy "wwy, §) - h.
Thus Oy, (h]) = Oy (hb) if and only if there is w € W(pk,ws - k) such that
h = (wy 'wwi, S) - h.

Now since h € H{, this is if and only if w;lwwl =1 so that ws = ww;.

(ii) Let 0 € W(®k, p, h). Since ~ is an equivalence relation, there is a unique
1 < < pso that 0 ~ w;. Thus there is w € W(pg,w; - h) such that o = ww;.
Suppose that w' € W(pg,w; - h) such that ¢ = w'w;. Write w; = [v;, 8], w =
[v,s],w = [V, s],v; € W(Pk),s; € W(Py),v,v" € W(pk),s,8 € W(pp;e). Then
if ww; = w'w; we must have vsv;s; = v's'v;s; as elements of W(®) so that vs = v's’.
But recall that Lemma 4.3 (ii) implies that w = [v, s] = w’ = [v/, s'] as elements of
W (pk,w; - h) if and only if vs = v's’. O

For v € G', let X, (7) denote a complete set of representatives for the good G,
orbits which map to Og(y) under the orbit correspondence F,. As an immediate
consequence of Lemmas 4.10 and 4.12 we have the following.

Theorem 4.13. Let h € Hg, and let w;, 1 < i < p, be a complete set of representa-
tives for the equivalence classes in W(®x, ¢, h) given by ~, . For each 1 <i <p,
fix S; € SO(®, ) such that (w;, S;) € A(h). Then we can take

Xo(h) ={fs (wi,S;) -h): 1 < i <p}.
5. TWO-STRUCTURES

In this section we review basic facts about two-structures and prove results which
will be needed for the lifting of discrete series characters. As in §4 we let 7 (®)
denote the set of all two-structures for .

Fix a choice @ of positive roots, and let ¢ € 7(®). Let B be the set of positive
long roots of ¢, where by a long root of ¢ we mean any root in an A; factor or any
long root in a By ~ C5 factor. Then B is an orthogonal basis for ¢. Suppose that
B € & is orthogonal to every a € B. Then [ is orthogonal to ¢ and the reflection
sg in (3 is an element of W (®) with det sg3 = —1 and sgpt = ¢*. This contradicts
the definition of two-structures. Thus no root of ® is orthogonal to every a € B.

Choose an ordering {a1, ..., a, } of B which satisfies the following condition. Sup-
pose that two roots of B are in the same irreducible factor of type Bs of ¢. Then they
should be adjacent in the ordering so that they are oy, a;11 for some 1 <i <n—1.



2576 R. A. HERB

Now since they are long roots in a factor of type Ba, %(:I:ai + aj41) are roots in .
We order «a;, ;1 so that %(ai —a;y1) € . Since no root of @ is orthogonal to
every a € B, we can use the lexicographic ordering with respect to B to define a

new choice of positive roots for ® which we will denote by ®*(B). Now there is a
unique w € W(®) such that ®*(B) = w®™. As in page 501 of [9] we define

(5.1) €(p: ®1) = detw.

Lemma 5.1. The definition of €(¢ : @) is independent of the choice of ordering
of B used, so long as the ordering satisfies the above condition for each irreducible

factor of ¢ of type Bs.

Proof. In the case that ® is spanned by strongly orthogonal roots so that rank ® =
rank ¢, problems in page 513 of [9] show how to prove that (¢ : &) is well-defined.
We will modify this proof to prove the result in the cases that ® is not spanned
by strongly orthogonal roots. We may as well assume that @ is irreducible. In this
case all roots of ® have the same length, so there are no factors of type By in ¢
and hence no restrictions on the ordering of B.

Let {1, ..., } be an ordering of B. Let ® be the positive roots corresponding
to this ordering, and let ®J be the positive roots corresponding to the ordering
where «; and a;41 are interchanged for some 1 < ¢ < n —1. If fbf = w; &t and
®F = wy®t, then ®F = wow;'®;. Thus to show detw; = detw, it suffices to
show that ®] N ®; contains an even number of roots.

For any v € ®, define ¢; = c;i(y) = (@, 7)/{i,a;),1 < i < n. Then & N &5
consists of all roots v such that ¢; = ... = ¢;-1 = 0,¢; > 0, and ¢;41 < 0. Thus v
has the form

V= cio + Cip10g1 + A

where ) is in the real vector space spanned by @, is orthogonal to a, ..., a;, a1, but
is not necessarily a root. Further, A\ # 0 since a; and a;41 are strongly orthogonal,
and all roots of ® have the same length. Now

!
V= —Sa;8a;,, Y = Ci0G + Cip10ip1 — A

is also an element of ® N ®,. Thus the roots in ® N ®, can be grouped in
pairs. ([l

Define
W(p:®T)={weW(®):wendh)c et}
The following lemma is easy to check from the definitions.
Lemma 5.2. For any o € W(yp: 1),
e(op: @) =detoe(p: ®T).
Further, for any s € W(®),
e(sp:sPT) =e(p: @T).

Theorem 5.3. Suppose that ® is irreducible and let ®* be any choice of positive
roots for ®. Then

Y gty = {(—1)" if © is of type Azn;

oeT (D) 1 otherwise.
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Proof. Suppose that ® and ®3 are two choices of positive roots. Then there is
w € W(®) such that ®§ = wd], and using Lemma 5.2,

Y o) = Y cpiudi)= Y dw i) = Y elp: )

0T () 0T () 0T () ©ET(®)

since w permutes the elements of 7(®). Thus it is enough to prove the result for
one choice of positive roots.

We will prove the result by induction on the rank of ®. It is obvious when ® has
rank 0 or 1. Assume that the rank of ® is greater than one, and that the theorem
is true for root systems of rank less than that of ®.

Fix @9 € 7(®) and pick a basis B of long roots of ¢g. Pick an ordering B =
{aq, ..., } so that if two roots of B are in the same irreducible factor of type Bs
of ¢, then they are adjacent in the ordering. Let ®* = ®*(B).

Define ®; = {3 € ® : (B,a;) = 0,1 < i < n— 1}, = & N d*. Then
an € ®f so that &7 # 0. Let o be a simple root for ®f. Then because ®* is the
lexicographic ordering with respect to aq, ..., ay,, it is easy to see that « is also a
simple root for ®+.

If ® is spanned by strongly orthogonal roots, then aj, ..., o, is an orthogonal
basis for the vector space spanned by ®, so we must have CI)i|r ={a,} and a = .
Suppose P is not spanned by strongly orthogonal roots. Then ® is of type Agy,,n >
1,A2,-1,m > 2,Dopt1,m > 1, or Eg, in which case n = 4. For any 8 € @, let ®g
denote the set of roots in ® orthogonal to 5. If ® is of type Aay,, Aapn—1, Dant1, OF
Es, and B € @, then ®g is of type Agn—2, Aop—_3, Dan—1 X Ay, or As respectively.
Using this we can see that ®; is of type A; except when & is of type As;,, in which
case it is of type As. Thus a = «,, except when @ is of type As,. In this case «,
is the unique nonsimple root in <I>f.

Suppose that ¢ € 7(®) and « & . Then since « is simple for @, s,(pN®T) C
&1 so that by Lemma 5.2,

€(sap: ®T) = —€(p: @T).
Thus such two-structures appear in pairs which cancel in the sum, and so
S odpiaty = Y (e 0t
0T (®) 0T (,0a)

where 7(®, o) = {p € T(®) : a € p}.

Let ¢ € T(®,a) and suppose that ¢, = ¢ N @, & T(P,). (Here as above, D,
denotes the roots in ® orthogonal to «.) Using the techniques of Lemmas 4.8 and
4.9 of [5] we see that such two-structures appear in pairs which cancel in the sum.
Thus in any case we have

Yooty = D> (v @)
PET (D) PET(®,0)"

where 7 (@, o) = {p € T(P,a) : po € T(Py)}-

Suppose that ® is spanned by strongly orthogonal roots. Then it is proven in
Lemmas 3.3 and 4.10 of [5] that ¢ — ¢, gives a bijection between 7 (P, )" and
T(®,), and that

e(p: @) = e(pa : D)
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for all ¢ € T(®,)’, where & = &+ N P,. Thus the theorem follows from our
induction hypothesis applied to the root system ®, since ®,, is spanned by strongly
orthogonal roots and hence contains no irreducible factors of type Ay, .

Thus we may as well assume that all roots of ® are of the same length so that
every ¢ € T(®) is of type A}. In this case, when a € ¢ we have ¢ = ¢, U {£a}.
Clearly ¢, is always in 7 (®,,) in this case, and any 1, € 7 (®P,) can be expanded
by adding +a to become an element of 7 (®). Thus the mapping ¢ — ¢, gives a
bijection between 7 (P, ) and 7T (P,).

Let ¢g be the two-structure used above to define ®*. Then by definition
€(pg : ®F) = 1. If @ is not of type As,, then a = «, so that oy € T(P, ).
Write 1 = g in this case. Now suppose that ® is of type As,. Recall ®; is of
type Ao and that « is a simple root for <I)f while «,, is the unique nonsimple root
in <I>f. Let o' denote the other simple root in (I>f, and define @1 = s4/¢0. Then
Sy = @, 1 < i <n—1, while sy, = «. Thus p; € 7(P,a) and sa/apar = gpf
so that e(pp : @1) = —1.

In either case, we let ©1 = (¢1)a. Then €(y; : ®F) = 1 since @ is the lexico-
graphic ordering with respect to the basis {a1, ..., a1} of ¢1. Now let ¢ € T (D, ).
Since po € T (P, ), there is o € W(®P,) such that (¢, N PT) = (1 N ®T). Now
(p1N®T) = (Y1 N®T)U{a} and ca = a, so that o(p; NPT) = (P N®T)U{a} =
N ®*. Thus

e(p: @) =detoe(pr : @) and e(pq : L) = det oe(ehy : DF).
Now if @ is not of type Aa,, then e(p; : @) = e(¢r - oF

«

€(pa : @F) for all p € T(P, ). If P is of type Aay,, then
(o1 : @) = —1 = —¢(apy : DY)

so that €(p : D) = —€(pq : L) for all ¢ € T(P,a). The theorem now follows
from our induction hypothesis applied to the root system ¢, since ¢, contains no
irreducible factors of type As, unless ® is of type As,, while in this case @, is of
type Ag(n_1)- U

) =1 so that e(¢ : ®1) =

Remark 5.1. A different definition of the signs e(¢ : @) was given in [4]. This
definition satisfies Lemma 5.2, but > 7 ) €(¢ : ®T) = 1 for every root system
®. Thus the two definitions agree unless ® contains an irreducible factor of type
As, k=1 (mod 2), in which case they give opposite signs.

Let ®T be any choice of positive roots for ®, and for ¢ € T (®), let o™ = NPT,
Then we define

@) =3 3w st =5 3 e p(®F.0) = p(@) — (7).
acdt acpt

Let B be a basis of long roots for ¢, and let B = {ay, ..., } be an ordering so
that if two roots of B are in the same irreducible factor of type Bz of ¢, then they
are adjacent in the ordering. Let ®* = ®T(B),pt = pN &,

Lemma 5.4. Assume that ® is irreducible and let p € T(P). Then

2k (mod 4) if  is of type Aay;
0 (mod4) otherwise.

[@T\¢ "] = {
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Further, if ® is not of type Ay or Cp,n odd, then

(I>+a 30 Z Ny

where n; € Z,1 < i < n. Suppose that @ is of type Copy1,k > 0. Then ¢ has a
unique irreducible factor of type Ay. If the root from this irreducible factor is first
in the ordering, then again we have

(I>+a 30 Z Ny

where n; € Z,1 <1i <n =2k-+ 1. If this root is last in the ordering, then

<I>+,<p Zal —|—z:nzaz

wheren; € Z,1 <1< n=2k+1.

Proof. Suppose first that @ is of type Agg, k > 1. Then [®T] = k(2k + 1) and ¢ is
of type A¥ so that [p1] = k. Thus [®@T\¢1] = 2k2 = 2k (mod 4).

Suppose that @ is of type Go. Then ¢ = {+ay,+as} where oy is long, as is
short, and (a1, as) = 0. Now

1 il
2% 3
Thus [®T\¢T] = 4, and if B = {a1,a2}, then p(®1) — p(¢1) = ai, while if
B = {az, a1}, then p(®F) — p(p*) = 2as.

Now assume that ® is not of type Agg or Go. For any v € @, define

ci(y) = {ei, 1) /{,00),  1<i<m

Since ® is not of type G2 we have ¢; € {0,+1/2,£1},1 < i <n.

Fix v € ®*. Since no root of ® is orthogonal to every element of B, there is at
least one 4,1 < i < n, such that ¢;(7) # 0. Suppose that there is only one such
index. That is, there is 1 < r < n such that ¢.(v) # 0,¢;(y) = 0,7 # r. Then
as in the proof of Theorem 5.3, since ® is not of type As,, the set of roots in &
orthogonal to (n — 1) orthogonal roots must be of type A;. Thus v = a, € ¢™.

Fix v € ®T\p*. Then by the above, there are at least two indices i,1 < i < n,
such that ¢; = ¢;(y) # 0. Let 7 < s be the two smallest such indices. Then we can
write

1 3
D\p = {i§a1 + o1 = 5042}.

Y = CrQy + CsQs + '7,

where ¢, > 0,¢s # 0, and 4/ is in the real vector space spanned by @, is orthogonal
to a;,1 < i < s, but is not necessarily a root. Since ¢, > 0, we must have
¢r € {1/2,1}. Now define

/ /
T =7 =60+ Css Y, Y2 = —Sa,Y = CrQp — CsOls — 7,

/ /
Y3 = Sa,Y = CrQr — CsQs + 7, V4= —Sa,8q,Y = CrQy + CsQs — Y.

Since o, a5 € p and v € o, we have v; & »,1 < i < 4. Thus v; € ®T\p™ for all
1<i<4.
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Suppose that 7' # 0. Then the roots «;,1 < i < 4 are distinct. Further,

4

1

5 Z% = 2¢,ay., 2¢, € {1,2},
i=1

and so is an integral multiple of .. Thus roots of this type in ®T\p™* can be
grouped into subsets of four roots so that the half sum of each group is an integral
multiple of «a; for some 1 < i < n.

Now assume that 4 = 0. Then v = c,a, + csa; is in the linear span of the
orthogonal roots «;,as. This cannot happen if all roots of ® are of the same
length. Thus the lemma is proven in the equal length case.

Now assume that ® is of type By, Cy, or Fy, and v € ®T\pt such that v =
cray + csas. Now since .-, as are strongly orthogonal, we see that v can only be
a root if a,, as are both long, v is short, and ¢, = 1/2,¢, = £1/2. But if ® is of
type By, all short roots are elements of ¢. Thus we may as well assume that ® is
of type C,, or Fy.

Assume that ® is of type C,,,n > 1, or F,,,n = 4. Then the short roots of ®*
are all roots of the form %(ai +a;),1 <i<j<n. Let k be the greatest integer in
n/2. Then there are 2k short roots in ¢T. Thus if n is even, there are 4k(k — 1)
short roots in ®+\¢™*, while if n is odd, there are 4k short roots in @\ ™.

Suppose that n is even, or n is odd and the root from the irreducible factor of
type A; of ¢ is last in the ordering. Then v € T just in case v = %(agi,l + )
for some 1 < i < k. Thus the half sum of short roots in ®T\¢™T is

5 Y -da—g X awi= Y (1= 20)(3) 0z +a)

1<j<n 1<i<k 1<i<k
If n = 2k is even, then %(n—2i) =k—i€Z,1<i<k, whileif n=2k+1 is odd,
then 2(n —2i) =k —i+1/2.

Now suppose that n is odd and the root from the irreducible factor of type Ay
of g is first in the ordering. Then v € o™ just in case v = %(an,gi,l + ay—9;) for
some 0 < i < k — 1, where k is the greatest integer in n/2. Thus the half sum of
short roots in @\ is

1 . 1 . .
D SUREIEEED ST ST DI TR T
1<j<n 0<i<k—1 0<j<k—-1 1<i<k
[l

Write r(®) = ([®] —[¢])/4 where ¢ € T(®). Then r(®) is independent of ¢ since
all ¢ € T(®) are conjugate via W(®), and is an integer by Lemma 5.4.

Theorem 5.5. Let ®T be any choice of positive roots for ®. Then
S o @)= (-1,
pET(P)
Let p € T(®),pt =N dT.
(i) Suppose that ® is of type Agn,n > 1. Then p(®+)—p(p™) is not in the weight
lattice of ®.

(i) Suppose that ® contains no irreducible factors of type Agy,n > 1. Then p(p™)
is in the weight lattice of ® and p(®+) — p(¢™) is in the root lattice of ®.
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Proof. The first result follows directly from combining Theorem 5.3 and Lemma
5.4, and (i) is easy to check. It remains to prove (ii). Since p(®™) is in the weight
lattice of @, the first statement will follow from the second. But by Lemma 5.4
there is a choice ® of positive roots for ® so that p(®]) — p(¢ N @) is in the
root lattice of ¢, hence in the root lattice of ®. But p(®1) — p(p™) differs from
p(®1) — p(p N @) by elements of the root lattice of ®. O

Define rank 7 (®) to be the common rank of every ¢ € T (®). Let Zayg(®) denote
the set of all root subsystems ¢ C ® such that every irreducible factor of ¢ is of
type Ay or By and rank ¢ = rank 7(®). Thus 7 (®) C Taug(®P).

Lemma 5.6. Let ¢ € Tous(®). Then there is at least one po € T(P) such that
@ C @o. Moreover, when ® is irreducible, g is unique unless:

(i) @ is of type By, and ¢ contains at least 3 irreducible factors of type A1 gen-
erated by short roots;
(ii) @ is of type C,, and @ contains at least 3 irreducible factors of type A1 gen-
erated by long roots;
(iil) @ is of type Fy and ¢ contains 4 irreducible factors of type Ay generated by
roots of the same length.

Finally, if ¢ & T(®) then there are two irreducible factors of ¢ of type Ay which
generate a root system of type Bo in .

Proof. We may as well assume that @ is irreducible. If ® contains no root systems
of type B, then augmented two-structures ¢ of ® must be of type A} where n =
rank 7(®). But all such ¢ are two-structures. Thus in this case Toug(®) = 7(P)
and the lemma is trivial. If ® contains root systems of type B, then ® is of type
B,,,Cy,, or Fy. In these cases it is easy to check the lemma using the following facts.
If @ is of type B,,, then any long root of ® is contained in a unique irreducible factor
of @ of type Bs, while any pair of orthogonal short roots span an irreducible factor
of type By. If @ is of type C,, then any short root of ® is contained in a unique
irreducible factor of ® of type Bs, while any pair of orthogonal long roots span an
irreducible factor of type Bs. Finally, when ® is of type Fj, any two orthogonal
roots of the same length determined an irreducible factor of type Bs. O

The following lemma is elementary.

Lemma 5.7. (i) Let ¢ be a root subsystem of © such that every irreducible factor
is of type A1 or By. Then ¢ € Toug(®) if and only if no root of ® is orthogonal
to every root in .
(ii) Let S be any set of orthogonal roots in ®. Then there is ¢ € T(®) such that
S C .

6. LIFTING OF DISCRETE SERIES

In this section we will define lifting from the two-structure groups G, to G' and
restate Theorem 1.2 more precisely as Theorem 6.4. We then prove Theorem 6.4,
modulo the proof of Lemma 6.8, which is deferred to the next section.

Asin §1, for S € SO(®, ), h € H, s, such that fs(h) € G', we define

DS (h) = |Da(fs(h))| 2 |Dy(h)|?.
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Let O, be a good orbit in Gfp such that F,(O,) is a regular semisimple orbit in G.
Then there are S € SO(®,¢),h € H, 5, such that h € O,. Now for any v € O,
we can define

D (7) = Dg(h).
It is easy to see that this is independent of the choice of S and h.
As in §4, for g € G, we let X, (g) denote a complete set of representatives for
the good G, orbits which map to Oq(g) under the orbit correspondence F,. It is

possible that X, (g) = 0.
Let © be a class function defined on G7,. Now for g € G', we define

(6.1) (LiftSO)(g) = > DE(H)O(n).

h'eX,(9)

In the case that X,(g) = 0, we have (Liftg@)(g) = 0. The definition does not
depend on the choice of X,(g). If g,¢' € G' with Og(g) = Oc(g’) we can take
X,(9) = Xo(g'). Thus Liftg@ is a class function on G.

Lemma 6.1. (i) Suppose that ® contains no irreducible factors of type Aok, k >
1. Let A € ib" be a discrete series parameter for G. Then X is also a discrete
series parameter for G, for every ¢ € T(®). Further, if A is a limit of discrete
series parameter for G, then it is either a discrete series or limit of discrete
series parameter for G,, ¢ € T(®).

(ii) Suppose that @ is irreducible of type Asy,k > 1. Then there is ¢ € T(®) such
that no discrete series parameter or limit of discrete series parameter for G
is a discrete series or limit of discrete series parameter for G,.

Proof. (i) follows easily from Theorem 5.5.

(ii) Using the classification in [9] for example, we see that @ is of type A,_1 X
Agy—1 for some p and g with p + ¢ = 2k + 1. Suppose that A is a discrete series or
limit of discrete series parameter for G. Then A — pg € Lp. It is easy to check
that when ® is of type Ak, pa is in the root lattice of ®, and hence is an element
of L. Thus A € Lp. Now A —p, € Lp, = Lp if and only if p, € L. Thus it
suffices to find ¢ € 7(®) such that p, & Lp.

Now @5 = () only if p <1 and g < 1. But p+ ¢ > 3, so this cannot occur. Thus
Qi #0. Fix a € @, p € T(P). Since by Theorem 5.5(ii) p,, is not a weight of @,
there is 8 € ® such that 2(p,, 3)/(8,3) ¢ Z. Now since ® is irreducible, there is
w € W(®) such that « = wB. Now wy € T(®) and py, is not a weight for O,
and so py, € Lp. O

Fix a discrete series or limit of discrete series parameter A for G and fix E* =
E*(X) as in §3 so that A is in the closure of E*. As in §3 we have the discrete
series or limit of discrete series character ©, corresponding to A and E*. For any
¢ € T(®), E* is contained in a unique connected component E7, of

E'(p)={r€eE:{(r,a) A0V a € ¢}.

Suppose first that ® contains no irreducible factors of type Asg. Since A is a
discrete series or limit of discrete series parameter for G, and A is in the closure of
E7, A and E* also determine a discrete series or limit of discrete series character
6y for G,.

Now suppose that ® contains irreducible factors of type Asg, k > 1. Let w denote
the set of all X € g such that [ImA| < 7 for every eigenvalue A of adX. Define
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Q = exp(w) C G. Then w is an invariant neighborhood of the identity in g and 2
is an invariant neighborhood of the identity in G. Let €' = QN G’. Now for any
¢ € T(®), we let 2, denote the union of all good regular G ,-orbits which map into
Q) via the orbit map Fi,. If © is any class function on €),, we can define a class
function on € as in (6.1) by

(LiftSO)(9) = > DS(x)0(x), ge.
z€Xo(9)
Note that by definition, for any g € ', X, (g) C Q.
We will define a class function ©% on pr. The only obstruction to defining %

on Gfp is that {x—,, is not well-defined in the case that (@49 is not well-defined
on B. Let Eg denote the subspace of E = ib™ spanned by ®.

Lemma 6.2. Let S € SO(®), and h € Hs N QY. Then there is H € hg Nw such
that h =exp H. For all T € E3,

h— ET(h) _ eT(Cng)
gives a well defined function on Hg N QY. Finally, if (w,S’) € A(h), then
& ((w,8") - h) = &1, (h).

Proof. Since h € 2 there is H € w such that h = exp H. Then H € Cy(h) = hg,
so that H € hg Nw. Now suppose that H, H' € hg Nw such that h —expH =
exp H'. For any a € ®, a(cg'H — cg'H') € 2miZ. But [Im a(cg'H — cg'H')| <
Tm csa(H)| + [Im csa(H')| < 27 because H, H' € w. Thus a(cg'H — cg'H') =
0 for all a € ® so that 7(cg'H) = 7(cg'H') for all 7 € Fg. Finally, if h
expH,H € hg Nw, then for (w,S") € A(h), (w,5")-h = expcs/wcng where
cs/wcng € hg Nw. Thus by definition,

gT((w) Sl) ) h) = eT(wcng) = ewilT(cng) = g'wflT(h)'

O

Let S € SO(®,¢),h' € Hy s NQ, and let h = fs(h) € HsNQ'. Let ®* be a

choice of positive roots for ®. Then p(®T, ) € Es, so using Lemma 6.2 we can
define

Epat o) (M) = Epat o) (), Exp, (B) = Ex_p, (h) = Ex_p(h) Epat o) ().
Now we can define ©F on pr using the formula in Theorem 3.3 applied to the
group G, with the discrete series constants corresponding to E7;. (See Lemma 6.5
for details.) It corresponds to a discrete series character on a two-fold cover of G,.

In the case that ® contains no irreducible factors of type As,,n > 1, we define
Q=G =G and Q, = GJ,. This will allow us to handle the two cases
simultaneously from now on.

Let ®* be a choice of positive roots for ® and let ¢ = o N ®T. Recall that

1
qc = Edim(G/K)7 eq(®T : E*) = eg(E*) = sign H (a,7), TEE",
acdt
and let
1. * * : *
qdp = gdlm(Gw/Kg@)a 599(50+ 1 EY) = €,(E") = sign H (a,7), TEE

acpt
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Define
(6.2) eg(E*) = eg(fﬁJr CEY) =e(p: ) (1)1 (—1)%ep(pT 1 EN)eq(®T : EY).
Lemma 6.3. eg(E*) is independent of the choice ®* of positive roots.

Proof. Fix one choice ®* of positive roots and write T = ¢ N ®* as above.
Let w € W(®) so that w®™ is another choice of positive roots. Then there is
a unique u € W(yp) so that wd* N ¢ = up™. Further, w™lupt C ®F so that
w™lu € W(p : @). Thus there is v € W(p : ®T) so that w = uv~!. Now by
Lemma 5.2,

el :wdh) =e(vulp: ®T) =e(vp: ®F) =detwv e(p: 7).
But
ec(wdt : B*) = detw eq(® : E¥)
and
eo(up™ : B*) = detu e,(p™ : E¥).

For S € SO(®),h =ta € H}, define
(6.3) c(h) = c(Py)e(K, h).

Here c¢(K, h) = [Wy(h)/W(®k))] is the constant appearing in the discrete series
character formula of Theorem 3.3, and ¢(®;) is the constant occurring in Theorem
3.4. Note that ¢(h) depends only on the connected component of h in H}. Further,
if $,8" € SO(®),h =ta € HSNG',h' =t'a’ € Hg NG’ such that Og(h) = Og(K),
then ®; and ®, are conjugate via W(®g), so that c(h) = ¢(h’). Thus if g € G’
and S € SO(®), h € HL, such that Og(g) = Og(h), we can define c¢(g) = c(h), and
this is independent of the choice of S and h.

Recall that in §4, for any S € SO(®) we defined HZ to be the set of all h € HNG’
such that if (w, S) € A(h) and (w,S) - h = h, then w = 1. Let G" be the set of all
g € G such that there are S € SO(®),h € H{, such that Og(g) = Og(h). Using
Theorem 2.5 and Lemma 2.6 it is easy to see that this definition is also independent
of the choice of S and h.

Theorem 6.4. Let \ be any discrete series or limit of discrete series parameter
for G. Then for all g € QNG",

Ox(g) =clg) Y €eG(E") (LiftTO5)(g).

pET (D)

The remainder of this section is devoted to the proof of Theorem 6.4. We will
reduce the proof to a technical result, Lemma 6.8, which will be proven in §7.
Fix a set of positive roots T and let ¢ = & N, p € T(P). Define
1 1
pa=p(@") =5 D o po=plet) =5 D a p(@",0) =p(@F) = p(e").

2
aedt acpt

Now let S € SO(®) with corresponding Cayley transform c¢s. When & contains
no irreducible factors of type As,,n > 1, p(®1,¢) is in the root lattice of ® by
Theorem 5.5. Thus for h = ta € HL, as in §3 we can define

Eniar o) (h) = "D () exp(p(DF, ) (c5 " log a)).
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Otherwise, we define £ ¢+ ) (h),h € H§ N, using Lemma 6.2. Now for h €
HL N, we can define

(6.4) AG(®T : h) = H (1 — e *(h)&_ @+, (h).
accs(PH\pT)
We also define
_ G . G )1
(6.5) §(@T, ¢, h) = 1A (@ : h)|Aw(<I>+ ch)™.
Suppose that S € SO(P, ¢). As in §3, define
AG@T:h)=Ag(h)= J[ (1-e*(h), heHs;

a€cgPt

ALt ny=AL()= J[ A-e®), HeH,s
a€cspt
Then for b’ € H, g such that fs(h') = h € ', we have
AG(@T 2 h) = AG(RF ) TTAL (9T L W) @+ 4y (R),

and it is easy to see that
(6.6) DG (W) = |AZ(®F : h)| = 6(®, 0, h)AG (T : h).

Fix a choice ®* of positive roots, and for ¢ € 7 (®), let o+ = &T N . We use
these choices of positive roots to define A, AL, pg, py, €c(E*), and e, (E£*) for all

v €T (D).
Fix ¢ € T(®),5 € SO(®, ). We use the notation of §3 for G,. Then 6Y is
given on H, 5 N €Y, by the following formula.

Lemma 6.5. Let k' =t'a’ € H, g N pr. Then
(=1)% e, (E7) OF(h)
= Z AL(w-h) o, (w-h)e(l: EL: ph(w-h)).
weW (pi,h’)
Proof. In the case that X is a discrete series or limit of discrete series parameter
for G, this follows directly from Theorem 3.3 since by Lemma 4.3(ii), W(px) N
W(py) = W(pk,), so that the constant ¢(K,,h') = 1. Otherwise, this formula
can be taken as the definition of ©F. O
For h € Hy N QY with fg'(h) = b’ € H, s, write W (pox,h) = W(px,h'). We
also write p5(h) = @L(R') and c(1 : E* : oh(h)) = c(1 : Ey L (). For
w € W(Pk, o, h), we will write
5(@+7 P, w - h) = 5(Q)+7 12 (wa S/) ’ h)
where S € SO(®, ) such that (w,S’) € A(h). Tt is easy to see that it is indepen-
dent of the choice of S’.
Lemma 6.6. Let h€ HL N, S € SO(P, ). Then
eg (%) D (f5*(h) ©X(f5'(h) = el : @F)e(EY) (~1)%

X Z Al (w-h) ™t Ex_po(w-h) §(@T, 0, w-h)e(1: E* : pf(w - h)).
wEW (¢ K ,h)
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Proof. Let f5'(h) = ' = t'a’ € Hy,s. Then Dg(h’) = DG(w - 1) for all w €
W (pk,h'). Thus using (6.6), Lemma 6.5, and the definition of eg (E™),
€ (B") DY (W) O5(H) = elp - @M )eq(B") (~1)%
x Y DS(w- )AL (w- k)T e, (w-B)e(1: BF ol (w - 1))
weW (¢x,h')
= e(p: @M)ea(E") (-1)%°
XD AL ) e (w WS@E pow - We(1: B pf(w - ).
weW (¢x,h')
But

Ex—po(w-h') =& ps(w-h).

Lemma 6.7. Let p € T(®),S € SO(®), h € H;NQ. Then
S(E*) (LiftS0%)(h)
= (B (-1 D elp: @)@ g wh)
weW (P ,p,h)
x Ag(w-h)™h Ex_pe(w-h) c(1: E* : pf(w - h)).

Proof. By Theorem 4.13, we can take
Xo(h) = {f5' ((wi, Si) - h) : 1 < i < p}
where the w; = [v;,8;],1 < i < p, are a complete set of representatives of the
equivalence classes in W(®g, ¢, h) for the equivalence relation ~ 5, and S; €
SO(D,p),1 <i<p. Write
W= fo ((wi, i) - h),  hi= (i, Si)-h, 1<i<p.
Then we have
e (E") (LiftgOF)(h) = J(E*) D> DS (hy) O ().
1<i<p
Fix 1 < < p. Then using Lemma 6.6,
g (B*) Dg(hy) ©5(h;) = e(p: @) eg(E*) (—1)%
X Z AG(w-hy) e (w-hy) (@1, p,w-hy) e(1: E* : o (w- hy)).
weW (oK, hi)

Let w € W(pk, h;). Then there are v € W(pk),u € W(py,,) such that w = vu,
and vS; € SO(®,¢). Then (w,vS;) € A(p, hl) C A(h;) and (w,vS;)-h; = (w,vS;)-
(wi, Si) - h = (ww;, vS;) - h where ww; € W(®Pg, @, h) by Lemma 4.11. Thus we can
write

eg (E*) DZ () ©F (h})
=cc(B") (=)%Y 80T, pwwi h)e(: @)
weW (¢xhi)
x A (ww; - h) ™ Ex_pe (ww; - h) e(1: E* @ pf(ww; - h)).
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By Lemma 4.12 (ii), for each 0 € W (P, ¢, h) there are unique 1 < ¢ < p and
w € W(pk,h;) such that 0 = ww;. Thus
S(E*) (LiftTO%)(h)

@
= €G(E*) (_1)QG Z (5((1)4_7 w,w - h)€(50 : ¢'+)
wEW (P K ,p,h)

x A (w-h)™h &pe(w-h) e(l: E* : of(w - h)).
O

We will prove the following technical lemma in §7. Define To,q(®;) as in §5. For
’L/) S %ug((bt)a let

T(2,9) ={p eT(®): p NP = ¢}.

Lemma 6.8. Let S € SO(®),h =ta € H NQ'. Let @ be any choice of positive
roots for ® and let ¢ € Toug(Pt). Then

> (o @)@, 0, h) = {E(w 1 @h(h), if e T(Pr);

e T (@) 0, otherwise.
Assuming Lemma 6.8, we can complete the proof of Theorem 6.4 as follows.

Proof of Theorem 6.4. Since both sides of the equation are class functions on G” N
Q, it suffices to prove the equation for every h € HE N Q, S € SO(®).

Fix h e HENQ, S € SO(®P). Recall that ¢(h) = ¢(®;)c(K, h). Thus by Lemma
6.7 we have

c(h) > €e§(E") (LiftSOF)(h)

pET(P)
= eq(E*) (1) o(K,h) Y Ag(w-h)h & pe(w-h)
weW (P g ,h)
xc(Dy) Z 5(@T, p,w-h)e(p: @) c(1: B* : ph(w - h)),

€T (P,h,w)

where 7 (®, h, w) denotes the set of all ¢ € T(®) such that w € W(®g, ¢, h). Using
the formula for ©(h) in Theorem 3.3, we see that it suffices to prove that for all
w e W(Pg, h),

c(Py) Z S(@T, o, w-h)e(p: @) c(1: E*: @E(w - h))
wET (P,h,w)

=c(1:E": @;(w - h)).

Define 7(®,h) = {p € T(®) : IS’ € SO(D,¢) with (1,5") € A(h)}. Let
(w,S”") € A(h). Then it is easy to see using Lemma 2.6 that

T(®,h,w)=T(®,(w,S") - h).
For w = [v,s] € W(®g, h),c(P:) = ¢(Py). Thus,

(@) Y S@F pw-h)e(p: @) (1 BT phi(w-h))
PeT (®,h,w)



2588 R. A. HERB

depends only on (w,S”) - h, not on w and h separately, and so we see that it suffices
to prove that for all S € SO(®),h € HE N/,

c(Dy) Z 5(®F, p,h)e(p: @1) c(1: E* 1 (k) = c(1: E* : ®L(h)).
€T (P,h)

Let ¢ € T(®,h), and let ¢ = ¢ N ®;. Then ¢k (k) = ¢ N &} (k) depends only
on . Further, by definition there is S" € SO(®, ¢) such that (1,5") € A(h). Thus
S’ C @, and spans ®;. Now S’ C ¢ and spans 9, so that rank ¢ = rank ®,. Clearly
every irreducible factor of ¢ is of type A1 or By. Thus ¢ € T,ue(®P;). Further, since
S’ C 9, we have ¢ € T,(®;) if and only if ¢p € T (Dy).

Thus we can write

(@) Y elp:@N)5(@F, 0, h)e(1: B : ofi(h))
peT (P,h)

=c(®) > cl:ET:pnQih) > elp: ®N)I(@T, ¢ h),
Y E€Taug (Pr) PET(P,h,1)
where for ¢ € Toue(P:), T(®, h, 1) is the set of all ¢ € T(®, h) such that pNP;, = .
Let ¢ € Taug(®¢). If there is no S’ € SO(®) such that (1,5’) € A(h) and
S’ C 4, then by the above 7 (®,1,h) = (). Suppose that there is S’ € SO(P)
such that (1,5”) € A(h) and S’ C ¢. Then for all ¢ € T(P,v), S’ C ¢ so that
T(®,¢) =T (P,4,h). Now if ¢ & T (D),

> e @)@ o k)= Y (e @T)I(@T,p,h) =0
PeT (P,h,1) PET(2,9)

by Lemma 6.8. If ) € T(®,), then ¢ € 7,,(P;), and again using Lemma 6.8,

> e dN)5(@T 0 h) = D elp: @N)I(DF, 0, h) = (s Bh(R)).
0T (D,h,7) PET(2,9)
Thus by Theorem 3.4 we have

o(®) Y elp: ) 8(RT, 0, h) e(1: B 1 ()
PET (®,h)

—e(@) Y e h(R) el BT n@h(R) = o1 : B* : Gh(R)).
PeT, (D)

7. PROOF OF LEMMA 6.8

We keep the notation of §6. We may as well assume that ® is irreducible.
Throughout this section we fix S € SO(®) and h = ta € Hi N Q. Further, we
fix v € Ts N Bg such that h € 'yHg, and Hy € tg such that y~'t = exp(H;). Let
H, = cgl loga € ibg. Thus h = yexp(csH) where H = Hy+ Hy. In the case that ®
is of type As,,n > 1, by Lemma 6.2 we can assume that v = 1, and Hy +csHs € w.
Thus in this case for any 7 € Eg we define ¢"(v) = 1. For any « € ®, write

a(H)

Ala) =€ 2

_o(H)
2 .

—e *(7)e ;

d(a) = Ae)|Afa)| .

The following lemma is an easy consequence of the definitions.
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Lemma 7.1. For any ¢ € T(®) and any choice ®* of positive roots,

+
5@, o) =e” "y T da).
a€dPT\(eNdt)

Lemma 7.2. For any ¢ € T(®), e(p: @) §(®T, ¢, h) is independent of the choice
®F of positive roots.

Proof. Fix one choice ®* of positive roots and write o™ = p N ®+. Let w € W(P)
so that w®* is another choice of positive roots. Then as in Lemma 6.3 we can
write w = uv~! where u € W(p) with w®t Ny = up™ and v € W(p : ®T). Then
as in Lemma 6.3,
e(p:wd) =detv e(p: ).
By Lemma 7.1 we have
B(@F,p.h) = @) ] b(a).
a€®T\(p1)
It is easy to check from the definition that for any « € @,
6(—a) = —e*(7)d(a).

Thus we have

H §(a) = det we? (®F)~ p(“’q’+) () H d(a)

acwdt acdt
H d(a) = det uer®") H 0(a
acupt acpt

Thus
S(wd™, ¢, h) = det vd (@1, p, h).

Let 5 = cs® = (g, hg,c)- Then we can define
<I>R75:{a€<1>5:a(H)€RVH€QS};

Ors={aecds:a(H) iRV H < hg};

Sepx,.s = Ps\(PrsUPrs).

As in §4 we let o be the involution of go with fixed points g. For each a € &5 we
have a® € &g defined by

o’ (H) = a(o(H)), H e hgc.

Then a” = o if and only if & € P 5 and a” = —« if and only if a € P 5.
Define
bp=cyg'Prs, Pr=cg5'®rs, Popx =cg'Pcopyx,s.
For any o € ® we will write a”% = cg'(csa)?. Let ®F be a choice of positive

roots for ®. We say that CI%PX =dt NPopy is o-stable if a € @gPX if and only
if % € @gpx.

Lemma 7.3. Let ¢ € T(®) such that ¢ N Py € Toug(P:). Then for any a € P,
a € ¢ if and only if a®% € .
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Proof. Suppose ao € ®, Hy € tg, Hy € bg. Then a®3(Hy + Hy) = a(—H, + H»).
Since ¢ N @4 € Toug(Py), there is an orthogonal set S C ¢ N ®; such that [S'] =
rank ®;. Let wg: denote the product of the reflections corresponding to the roots
in S’. Then wg: € W{(p) and wg/(Hy + Hz) = Hy — Hs for all Hy € tg, Hy € bg.
Thus for all & € ®, a”° = —wg . Thus « € ¢ if and only if a” € . O

Note that
O, ={a € Pr:e%(y) =1}
Define
U =>0rU 9.

Lemma 7.4. (i) rank 7(¥) = rank 7 (®).

(i) For every ¢ € T(®) such that o N Oy € Toug(Ps), ¢ NP1 € Toueg(Pr), and
eNT € Ty (7).

(iii) For every i € T(¥) there is ¢ € T(®) such that ¢ NV = . Moreover, ¢
1s unique unless ® is of type Cyn,n odd, and VU has three irreducible factors of
type Cy,r odd.

(iv) Suppose that ® is of type Aap,m > 1. Then ®; is of type Azs for some
0 < s <mn. Otherwise, ¥ contains no irreducible factors of type Asp, k > 1.

Proof. (i) and (ii) are elementary.

(iii) Let ¢ € T(¥). Then every irreducible factor of v is of type A; or Ba,
and rank ¢ = rank 7(¥) = rank 7(®), so ¢ € Tayg(®). By Lemma 5.6 there is
@ € T(®) such that ¢ C ¢. Then ¢ NV € T, (¥) and contains the two-structure
1. Thus p NT = .

Now suppose that ¢ is not uniquely determined by . By Lemma 5.6, ® is of
type B, Cy, or Fy. When @ is of type B,,, ¥ will be of the form D} x Dgyp, x By x By
where k,p,r,s > 0 with 2k 4+ 2p+r+ s = n, and the D5, Dy, factors consist of long
roots in ®. Thus 1 contains at most two irreducible factors of type A; generated
by short roots coming from the B, and By factors where r or s is odd. Thus by
Lemma 5.6, ¢ is uniquely determined by 1.

When @ is of type Fy, ¥ will be of the form Fj, By, B3 X By, By X By, By X
A2 B2 x A2, or C3 x Ay, where we use A; to denote an irreducible factor generated
by one long root and Bj to denote an irreducible factor generated by one short
root. Thus 1 will be of the form B3, By x Bf, By x A2, or B? x A?. Again, by
Lemma 5.6, 7 (P, ) will contain exactly one element.

When @ is of type C,,, ¥ will be of the form D5 x Cpx Cr x Cy where k,p,7,5 > 0
with 2k +p+7r+s = n, and the D5 factors are generated by short roots of ®. Thus
1 has less than three irreducible factors of type A; generated by long roots, and
hence ¢ is unique by Lemma 5.6, unless p, r, s are all odd. In this case n must also
be odd.

(iv) Since @, is spanned by strongly orthogonal roots, it contains no irreducible
factors of type Asx, k > 1. Further, ®; is the orthogonal complement in ® of S. Now
if @ is spanned by orthogonal roots, so is ®;, so it contains no A, factors. Suppose
that ® is not spanned by orthogonal roots. Then it is of type As,, A2nt1, Dont1,
or Fg, and as in the proof of Theorem 5.3, the orthogonal complement of one
root is of type Asp_2, Aon_1, Don—1 X Ay, or As respectively. Thus the orthogonal
complement of an arbitrary orthogonal set S is of type Ass when @ is of type As,,
and contains only simple factors of type Asgt1, Dagt1, or Fg otherwise. O
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Let W' be any choice of positive roots for W. Then for any ¢ € Toue (), we
define

So(Ut )= [ da)

acU+\yp+
where T =N U, For ¢ € Toue(V), let T(P,¢) ={p € T(P): pNT = ¢}.
Lemma 7.5. Let ®F be any choice of positive roots for ® and let 1 € Toug(¥), p €
T(®,1). Then
5(®, o, h) = e”®" 2 (7)80 (U N BT, 1, h) 11 §(cv).

a€®Epx \(eNPEpx)
If in addition, ®¢py is o-stable, then
H d(a) = 1.
a€QEp \(PN@Epy)
Proof. Let ¢ € T(®,v). By Lemma 7.1,
6@ o h) =) T 80,

a€dt\pt

Let a € ®T\Ut. Then a € (Pr\®;) UPcpx. If @ € PR\Py, then e *(y) = —1
so that

a(H) _a(H)
2

Ala)=e 7 +e
is real and positive since a(H) is real. Thus d(«) = 1 in this case. Thus
I[I 6@ =6b@net,wnehn II 5(a).
aedt\pt a€®px \eNPEpx
0,5

Suppose that @gPX is o-stable. Then CI%PX can be divided into pairs a,
Since e~*(y) = £1 is real, we see that

A(a®%) = A(a).
Thus
5(a”%)d(a) = 1.
Further, by Lemma 7.3, a € ¢ if and only if a®° € . Thus

H d(a) = 1.

O‘e(bz‘PX\‘an)gpx

O

Lemma 7.6. Let @ be any choice of positive roots for ® and let ) € Toug(V), 9 &
T(¥). Then

S clp: @)@ 0 ) =0,
PET(2,9)
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Proof. The statement is vacuous when ® is of type As, since in this case ¥ has
one root length so that 75,5 (V) = 7 (V). Thus we can assume that ® is not of type
Ag,. Further, since both sides of the equation are independent of ® by Lemma
7.2, it is enough to prove the lemma for one choice of ®7.

Since ¢ & T(¥), by Lemma 5.6 there are aq, a2 € 1 occurring in Ay factors of ¢
such that a1, as are an orthogonal basis for root system of type Bs in . Note that
this implies that a, ag are either both in ®; or both in ;. Now ap = c(a1—ag) € ¥
where ¢ € {1,1/2}. Let s denote the reflection corresponding to ap. Then s
interchanges a1 and «s, and fixes every root of ¥ orthogonal to both «; and «s.
In particular, sy = .

Let B = {f1, ..., Bn} be an ordered orthogonal basis of ¢ such that g1, ..., G, is
a basis for v N ®; and B,41, ..., 8, is a basis for ¢ N ®;. Further, if a1, as € Py,
then we take 3; = «;,7 = 1,2, while if ay,as € @5, we take 8,1 = a1, 8, = ao.
Let ®F = ®*(B). Then @}, is o-stable. Let ¢ € T(®,4), and suppose that
there is a € @7 such that s € ®~. Since s interchanges a; and oy and fixes
every other 8; € B, we must have {a, a1) > 0, (a, ag) < 0. In particular, we must
have a1, a9 in the same simple factor of . But then ay € ¢y N ¥ = 1. This
contradicts the assumption that a;,as occur in A; factors of . Thus sp™ C ®F
for all ¢ € T(®, ).

Let o € T(®,4). Then spNW¥ = s(@N W) = sp = 1), so that sp € T (P, 1) also.
Further, since s> = 1, s(sp) = ¢. Thus we can divide 7 (®,) into pairs, ¢, s¢.
But by Lemma 5.2,

e(sp: @) =dets e(p: @) = —e(p: @T).
Further
p(®F,50) = p(®F, ) + ple™) — sp(e™).

Since p(pT) is a weight for ® and hence for U, p(¢*) — sp(p™) is in the root lattice
of ¥, so that

ep(<1>+,s<p)(,y) — ep(<1>+,<p)(,y)ep(f)fsp(f)(,y) — ep(<1>+7<p+)(,y).
Then, by Lemma 7.5, since @gpx is o-stable,

5(DF, s, h) = "5 (1) (T N DT, ), )

— P12 (1)5o (W N DT b, h) = §(DF, @, h).
Thus
e(sp: ®N)6(®T,s50,h) +e(p: ®T)6(RT, ¢, h) =
for all p € T(P,). O
Fix ¢ € T(V), and ¢ € T(®,1)). Let B be a basis for ¢ which contains two long
orthogonal roots from every irreducible factor of ¥ of type Bs.

Lemma 7.7. There is an ordering B = {az, ..., a, } with the following properties.

(i) For every irreducible factor ; of ¢, the roots in BN ¢; are adjacent in the
ordering.

(ii) Let ® be of type Cp,n odd, and let as be the root in B which generates the
unique irreducible factor of ¢ of type C1. Then if ag € Dy, it is the first root
in B, while if ag € @y, then it is the last root in B.
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(iii) Let @ = ®*(B). Then

H d(a) = 1.

O‘e(bz‘PX\‘an)gpx

Proof. Let ¥; be an irreducible factor of . We will call ¥; imaginary, respectively
real, if it is contained in ®j, respectively ®;. Since ¥ = &; U &, every VU, is either
real or imaginary. Similarly, we call every element of ®; a real root of ¥ and every
element of ®; an imaginary root of .

Suppose first that ¢ contains no irreducible factors of type Bs. Then conditions
(1) and (ii) are vacuous, so that it suffices to produce an ordering of B which satisfies
(iii). For this we just need to order B so that the real roots precede the imaginary
roots, so that (I)gpx is o-stable.

Now suppose that ¢ contains an irreducible factor of type Bs, so that @ is of
type By,Cy, or Fy. Let U, i = 1,2, be distinct irreducible factors of ¥. We will
say they are linked if there is an irreducible factor ¢; of ¢ of type By which has
nonempty intersection with both. In this case ¢; N ¥; is an irreducible factor of
v =NV, of type A1, and the roots in ¢; N Wy and ¢; N ¥y have the same length
in ®.

Suppose that ® is of type B,. Then ®; is of type B, x A¥ and ®, is of type
A’f X Do, x By where r + 2k +2p +q = n. Let Wy_1,1 < ¢ < k, denote the
irreducible factors of ®; of type A;. Then for each 1 < i < k there is a unique
irreducible factor Wy; of ®; of type A; which is linked with Wo; 1. The irreducible
factor Wop 1 of ®; of type Dy, cannot be linked to another factor. Finally, the
factors Wor 1o of @, of type By and Wapi3 of @1 of type B, are linked just in case
q and r are both odd. Now Wy, ..., Wy, 3 is an ordering of the irreducible factors of
¥ with the property that linked factors are adjacent.

Now we order B as follows. If ¥, is not linked to any other irreducible factors,
then we order B; = ¥; N B so that if two roots are in the same irreducible factor of
@ they are adjacent in the ordering. If ¥,;, U, are linked, we order B; so that if
two roots are in the same irreducible factor of ¢ they are adjacent in the ordering,
and the linked root is last. We order B;y1 so that if two roots are in the same
irreducible factor of ¢ they are adjacent in the ordering, and the linked root is
first. Now order B by taking B = B1, Bs, ..., Bag+s. This produces an ordering for
B which satisfies (i).

Let oo € Depx and let a; be the first element of B such that («, ;) # 0. Suppose
that a; € ®;. If oy € Wopy3, then « is orthogonal to every real root of B, so that
a € ®;. Suppose that a; € Uy; for some 1 < j < k. Write Ba;—1 = {3}. Now

a€dy={yed:(y,5) =0}

Since 3 is a long root and ® is of type B, ®3 is of type A1 x B,_. Here the
factor of type A; is Wa; and the factor of type B,,_» is the set of all v € ® which
are orthogonal to both 8 and «;. Since (o, a;) # 0, we must have o = +a; € Dj.
These contradictions show that «; € ®;. Thus <I>$ px is o-stable so that (iii) is
satisfied.

Suppose that @ is of type C,,. Then ®; is of type C, x A¥ and ®, is of type
Ak x Cp x Cyq where r + 2k 4+ p+ g = n. Define ¥;,1 < i < 2k, as in the B,
case. When n is odd we let as denote the root of B which generates the unique
irreducible factor of g of type A;.
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Suppose that n is even, or that n is odd and as € ®;. Let Wory3 be the
irreducible factor of ®; of type C... The factors of ®; of type C, and C, should be
labeled Wory1 and Worio. If Woryg is linked to one of these two factors, then it
should be labeled W49, while the remaining factor is Wory1. Now Wy, ..., Uorys
is an ordering of the irreducible factors of ¥ with the property that linked factors
are adjacent. We now order B as in the B, case. In addition, if n is odd, then
as € Uapy3 and this factor is not linked to any other. Thus we can order the roots
in BN Wy 3 so that oy is last. Using the argument in the B,, case, with the roles
of long and short roots reversed we see that this ordering satisfies (iii).

Suppose that n is odd, and a; € ®;. Then it is in one of the the factors of ®; of
type Cp, Cy. This factor should be labelled Wy. It is not linked to any other factor.
The other factor of this type should be labelled Wop1 and the irreducible factor of
®; of type C; should be labelled ¥ori9. Now Wy, ..., Uos o is an ordering of the
irreducible factors of ¥ with the property that linked factors are adjacent. Order
B as usual. Since ¥g is not linked, we can order the roots in BN ¥q so that ay is
first, and as above this ordering satisfies (iii).

Finally, suppose that ® is of type Fy. If ®; consists of only one irreducible
factor, then we can easily order the irreducible factors of ¥ so that any linked
irreducible factors are adjacent, and the imaginary factor is last. As above this
yields an ordering of B satisfying (i) and (iii).

Now suppose that @ is of type Fy and ®; is reducible. This occurs only when S
consists of two roots, one short and one long. In this case ¥ = {£a;,1 < i < 4}
is of type B? x A? and we can write ®; = ¥; U W3 and ®; = ¥, U ¥, where
U, = {£a;},1 <i < 4. We will order the roots so that «; and as have the same
length and a3 and a4 have the same length. Then Wy;_; and Wy; must be linked,
1 <4 < 2, so0 this ordering satisfies (i).

Let 8 € ®F 5y, and assume that —(37% € ®T. Then we must have (3, 1) = 0
and (0, az) # 0. There are four roots of this type given by

B1 = caa + cz(az +aq), [2 = caan + cz3(az — o),

B3 = coaa + c3(—az + ), B4 = cooa + c3(—a3 — o)
where ¢g,c3 € {1/2,1}. Further, 5 = —61‘7’5 and By = —ﬁg’s. Now, since for
i=1,2,
4
3(B)8(=B7%) = —ei(y), [ 6(8) = e %)
1=1
But §1 4 f2 = 2c2a2 + 2c3a3 and v = exp(Ho) where Hy = wi(niH},, +n3zH}.)
with n; € Z,7 = 1,3. Thus
(61 + 62)(H0) = 2mi2¢c3ng € 2wid

so that

4
[To8:)=1.

Now ¢ N¥ = 4 = ¥ since all irreducible factors of ¥ are of type A;. Since the
orthogonal roots in a factor of type By must have the same length, ¢ = @1 U @9
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where ; is the unique factor of type Bs containing awe;—1 and «g;,i = 1,2. Thus
Bi & v,1 < i <4. Since for all other a € @gpx, a®% € ®F we have

11 §(a) =1.

€ \ (NP x)

For any v € T(¥) and choice ¥ of positive roots for ¥, we have defined

Sty = [ d(.

aePt\(pNTt)

If @ is not of type As,, then by Theorem 5.5 and Lemma 7.4(iv), p(¥1, 1)) is in
the root lattice of ¥ so that

PP () = 1.
When @ is of type Asp,, ep(‘w’d’)('y) = 1 by definition. Thus we have

ot h) =8t n) ="V () [ da).

aelt\(ypNTt)

By Lemma 7.2 applied to ¥, we see that (v : ¥F)§(UT 4, h) is independent of
the choice of U,

Lemma 7.8. Let ®t and U be any choices of positive roots and let ¢ € T (V).
Then

> e @)@, 0, h) = (e WH)S(UT, 4, h).
T (®,9)

Proof. Fix ¢ € T(®,v), and let B(y) = {a1,...,a,} be an ordered basis for 1
satisfying the conditions in Lemma 7.7 with respect to ¢. Let

() = ©T(B(p)), VT (p) =T (B(yp)).
Then €(1) : ¥F(¢)) = 1 by definition. Further,

3@ (), 0, h) = " @O ()W (i), 9, )

by Lemma 7.5.

Modify B = B(p) as follows. If ¢; is an irreducible factor of ¢ of type Aj,
then BN ¢, = {ap} for some 1 < p < n, and we set B, = «a,. If ¢; is an
irreducible factor of ¢ of type Bz, BN p; = {ap, apy1} for some 1 < p < n—1.
The two roots have consecutive indices by definition, and since they are orthogonal
in a root system of type By, either both are short or both are long. If both are
long, then we define 5, = a, and 8,41 = ap+1. However if both are short, we
replace them by 5, = a, + apy1 and Bp41 = ap — apy1. This produces an ordered
basis B’ = {31, ..., Bn}, for ¢ which contains two orthogonal long roots from every
irreducible factor of ¢ of type Bz, and they are adjacent in the ordering. By
definition, e(p : ®T(B’)) = 1. But it is easy to check that ®*(B) = ®*(B’). Thus
e(p: 2T (p)) = L.
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Now by Lemma 7.2, for any ®* and U we have

S @)@, 0,h) =) el 2T ()3T (), 0, h)
PeT(2,9) ®

= > D)W (), v We(w T ()

= e(: UH)O(UF, 0, h) Y PO ().
©

Thus it suffices to prove that

Z eP(@T(2)0) () = 1.
PET (D7)

Suppose that @ is not of type Coppt1,m > 1. Then by Lemma 7.4, T (®, ) = {p}
has only one element. Further, by Lemma 5.4, if ® is not of type Aa,, p(®1(¢), ¢)
is in the root lattice of ¥ since each 3; € B’ is. Thus ep(q’+(‘P)7‘P)('y) =1. If ®is of
type Agp, then e?(®"(#):€)(y) = 1 by definition.

Suppose that @ is of type Ca,41, and fix ¢ € T(P,v)). Let ag denote the element
of B which generates the irreducible factor of ¢ of type Cy. If ag € Py, then it is
first in B’. Thus again by Lemma 5.4 p(®T, ) is in the root lattice of ¥ so that as
above

P @7 (2)0) () = 1.

Suppose that ag € ;. Then it is last in B’ and by Lemma 5.4,
1 2m
+ — .
p(@ (90);50) - igﬂz +A

where ) is in the root lattice of ¥. Thus

+ 2m .
PP (@00 () = (/2 T i ()

Now ®; is of type A¥ x C, and @, is of type A¥ x C, x C,, and by the choice of B
in Lemma 7.7, 6; = %(521;1 + f2;) € U for all 1 <1 < m, except in the case that p
and ¢ are both odd, in which case exactly one §; € ®g\P;. Thus

e”((w(“’)"")(’y) _ —1, if p and q are both odd;
1, otherwise.

Now if exactly one of p,q,r is odd, then 7(®,v) = {¢} has only one element and
ep(q>+(*”)"P)('y) = 1. If all three of p, q,r are odd, then 7 (®,9) = {¢;,1 < k < 3}.
For two of these elements, say ¢1 and 2, the unique irreducible factor of type Cy
is contained in ®;. For the other, 3, the unique irreducible factor of type C is
contained in ®;. Thus by the above,
3
Zep(¢+(<pi)’<pi)(’y) =14+1—-1=1.
i=1

O

Lemma 7.9. There is a choice W (h) of positive roots for U such that ¥+ (h)N®; =
&% (h) and
S(UH(h), . h) = (1)

for every ¢ € T (V). Here r(®y) is defined as in Theorem 5.5.
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Proof. Recall that for any choice of U, € T(¥), ¢yt = N TT,
S(UF k) =Vt wn) = [ 8.

€W \gt

We have h = yexp(cgH) where H = Hy + Hy, Hy € tg, Hy = cgl log a. Now for
all @ € ¥, e*(y) = 1, so that
Aa) = exp(a(H)/2) — exp(—a(H)/2).

Suppose that a € ®%(h). Then a(H) = a(H) = a(cg'loga) is real and
positive. Thus A(«) = 2sinh(w(Hz)/2) is real and positive, so that §(a) = 1.
Let <I>}r be any choice of positive roots for ®;, and write 1/);r =YnN <I>}r. Then if
Ut =&} (h) U®], we have

ot gy = I o).
ae®f\yf
Define
Lys={H€tlg:a(H) €2mZV ac Pr}.
Then we can write Hy = H{+ H{, where H} € Lg and H; € tg satisfies |a(H})| < 27
for all @« € ®;. When & is of type As,, we have Hy + csHs € w, so that for a € Py,
|a(H1)| = |Im «(H1 4+ csHz)| < m. Thus in this case we can take Hy = H{, H) = 0.
For a € ®;, write
A'(a) = exp(a(H;)/2) — exp(~a(H])/2), &'(a) = A(a)|A ()"
For every o € ®;(S5), a(H}) € 2miZ, so that
exp(a(Hg)/2) = exp(—a(Hp)/2).
Thus
A(a) = exp(a(H1)/2) — exp(—a(H1)/2) = exp(a(Hg) /2) Al (@);

I A =ep((p@]) —pw)Hy) [ A«
ac®\¢7 acd\yf
When @ is of type As,, Hy = 0. Otherwise, for every ¢ € T(V),¢; € T(®;) so

that by Theorem 5.5 and Lemma 7.4(iv), p(®7) — p(¢)]) is in the root lattice of
®;. Thus in any case we have

exp((p(®7) = p(W)(Hy) =1; (¥, 0k = [ ().

acd\pf

Let o € ®;. Then t, = a(—iH})/2 is real, and A’'(«) = 2isint,. By our choice
of H{, we have —m < t, < m. Further, since A(a) # 0, we have ¢, # 0, so we can
define a choice ® (h) of positive roots for ®; by a € ®F(h) if and only if ¢, > 0.
Now for a € @} (h), 0 < t, < 7 so that sint, > 0 and &' (@) = i.

Let Ut (h) = ®F (h) U ®L(h). For ¢ € T(V), 2r(®;) = [®] (h)\(v N @] (h))] by
definition. Thus by the above,

SO (h), 4, h) = 2@ = (—1)r(®1),
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Proof of Lemma 6.8. Let ¢y € Toug(®¢). Then we must show that for any choice
of &1,

S clp:@)s(@t ) = {E(wt $ 2R, A n € T();

CET(®,3r) 0, otherwise.

Fix ¢4 € Taug(Py). For each ¢ € T(®,v:), o N = 17 U, where ¢1 € Toug(Pr)
by Lemma 7.4. We can write

ST e oN)@t o n) = S ST o @)@, h).
‘PET(q)»"/}t) ¢Ie7;tlg(q>1) ‘PGT(CI)JZ’IUT/H)
But by Lemma 7.6,
Yo cp:@h)s(@T,0,h) =0
PET (P, 1Uyy)
unless ¥y Uy, € T (V). In particular, if 1, & T (®;), we have
> elp:dN)5(@, 0,h) =0,
QET (P,1))

and if ¢; € T(®;), we only get a nonzero contribution from ¢y € 7 (®Py).
Suppose that 1y € T(®P;). Then by the above,

Z (p: q)Jr)(s((I)Jrv ¢, h) = Z Z e(p: q)Jr)(s((I)Jrv o, h).
PET (®,1)4) Yr€T(Pr) 9T (P,9rUyn)
Thus by Lemma 7.8, for any choice ¥ of positive roots for ¥,
Yo e @80 o k)= Y e(r U TSI, vr Uy, h).
T (P,9;) YreT (Pr)

By Lemma 7.9, we can choose Ut (h) so that ¥ (h) N @, = ®%(h) and for all
’L/)I S T(q)l)a

S(UT(h), 1 Uy, h) = (_1)?“(‘1’1).
Write @} (h) = ®; N W+ (h). Using this choice of ¥+ (h),

(
Y e @N)s(@T ph) = (1) YT e(r U s U ()

PET (P,31) Yre€T (Pr)
= ()" ®e(gpy : @) Y elvhr : B (h) = e(thr - DF(R))
Y1€T(Pr)
by Theorem 5.5. |
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