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DISCRETE SERIES CHARACTERS AS LIFTS FROM
TWO-STRUCTURE GROUPS

REBECCA A. HERB

Abstract. Let G be a connected reductive Lie group with a relatively com-
pact Cartan subgroup. Then it has relative discrete series representations. The
main result of this paper is a formula expressing relative discrete series charac-
ters on G as “lifts” of relative discrete series characters on smaller groups called
two-structure groups for G. The two-structure groups are connected reductive
Lie groups which are locally isomorphic to the direct product of an abelian
group and simple groups which are real forms of SL(2,C) or SO(5,C). They
are not necessarily subgroups of G, but they “share” the relatively compact
Cartan subgroup and certain other Cartan subgroups with G. The character
identity is similar to formulas coming from endoscopic lifting, but the two-
structure groups are not necessarily endoscopic groups, and the characters
lifted are not stable. Finally, the formulas are valid for non-linear as well as
linear groups.

1. Introduction

Let G be a connected reductive Lie group with a relatively compact Cartan
subgroup. Then it has relative discrete series representations. The main result
of this paper is a formula expressing relative discrete series characters on G as
“lifts” of relative discrete series characters on smaller groups called two-structure
groups for G. The two-structure groups are connected reductive Lie groups which
are locally isomorphic to the direct product of an abelian group and simple groups
which are real forms of SL(2,C) or SO(5,C). They are not necessarily subgroups
of G, but they “share” the relatively compact Cartan subgroup and certain other
Cartan subgroups with G. The character identity is similar to formulas coming
from endoscopic lifting, but the two-structure groups are not necessarily endoscopic
groups, and the characters lifted are not stable. Finally, the formulas are valid for
non-linear as well as linear groups.

Two-structures were used in [5] to prove identities for the constants occuring in
Harish-Chandra’s discrete series character formulas. In these formulas the charac-
ter is restricted to the connected component of a Cartan subgroup, and the two-
structures used are those corresponding to a set of real roots determined by the
connected component. Thus there is a different formula for each connected compo-
nent of each Cartan subgroup. These formulas are used in this paper to prove the
lifting formula. The main technical difficulty is to see that all these formulas can
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be combined into a formula which is uniform on all Cartan subgroups and given in
terms of the two-structures of the full root system of G.

Two-structures for G are defined as follows. Let B be a relatively compact
Cartan subgroup of G, that is a Cartan subgroup that is compact modulo the
center of G. Let g and b denote the real Lie algebras of G and B respectively, and
let Φ = Φ(g

C
, bC) denote the set of roots of g

C
with respect to bC. Let ϕ be a root

subsystem of Φ, that is a subset of Φ which is closed under its own reflections, and
hence is a root system with the same inner product as that of Φ. Then ϕ is called
a two-structure for Φ if it satisfies the following two properties.

(i) Every irreducible factor of ϕ is of type A1 or B2 ' C2.
(ii) Let ϕ+ be any choice of positive roots for ϕ. Then if w is in the Weyl group

of Φ with wϕ+ = ϕ+ we have detw = 1.

We let T (Φ) denote the set of all two-structures for Φ.
The sets T (Φ) for irreducible Φ can be described as follows. If Φ has one root

length or is of type G2, then T (Φ) consists of all root subsystems of Φ of type
Ak1 where k is the size of a maximal set of orthogonal roots in Φ. If Φ is of type
B2k, C2k, k ≥ 1, or F2k, k = 2, then T (Φ) consists of all root subsystems of Φ of
type Bk2 . Finally, if Φ is of type B2k+1, C2k+1, k ≥ 1, then T (Φ) consists of all root
subsystems of Φ of type Bk2 ×A1.

The groups Gϕ are defined as follows. Fix ϕ ∈ T (Φ). It is a root subsystem of
Φ. However it need not be closed in Φ under addition, and so does not necessarily
correspond to a subalgebra of g. Write ϕ = ϕ1 ∪ ... ∪ ϕk for its decomposition
into irreducible factors. Then each ϕi, 1 ≤ i ≤ k, is closed under addition in Φ,
and so corresponds naturally to a simple Lie subalgebra g

i
of g. This subalgebra

has the property that if bi = b ∩ g
i
, then bi is a Cartan subalgebra of g

i
and

Φ((g
i
)C, (bi)C) = ϕi, 1 ≤ i ≤ k. We also define

g
0

= b0 = {H ∈ b : α(H) = 0 ∀ α ∈ ϕ}.

Then
k∑
i=0

bi = b.

Let Gi be the connected subgroup of G corresponding to g
i
, Bi = exp(bi) =

B ∩ Gi, 0 ≤ i ≤ k. Let G0 × G1 × ... × Gk denote the abstract direct product of
the groups Gi, 0 ≤ i ≤ k. Since Bi ⊂ B, 0 ≤ i ≤ k, and B is abelian, the mapping
f : B0 × ...×Bk → B given by

f(b0, ..., bk) = b0...bk, bi ∈ Bi, 0 ≤ i ≤ k,

is a group homomorphism. Let ZB denote the kernel of this homomorphism. It is
easy to prove that ZB is a central subgroup of G0 × ...×Gk. Define

Gϕ = (G0 × ...×Gk)/ZB and Bϕ = (B0 × ...×Bk)/ZB.

Then Gϕ is a connected reductive Lie group with relatively compact Cartan sub-
group Bϕ, and the mapping fB : Bϕ → B induced by f is an isomorphism.

Let g
ϕ

and bϕ denote the Lie algebras of Gϕ and Bϕ respectively. Then

Φ((g
ϕ

)C, (bϕ)C) = ϕ.
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Since all irreducible factors of ϕ are of type A1 or B2, Gϕ is locally isomorphic to
the direct product of an abelian group and simple groups which are real forms of
SL(2,C) or SO(5,C). Note that

g
ϕ

=
⊕ k∑

i=0

g
i

can be identified with a subspace, but not necessarily a subalgebra, of g, because
elements from the different subalgebras g

i
do not necessarily commute with each

other as elements of g. This is because, although roots in different irreducible
factors of ϕ are orthogonal to each other, they need not be strongly orthogonal as
elements of Φ. Thus Gϕ can not necessarily be embedded as a subgroup of G.

If Φ is spanned by orthogonal roots, then each ϕ ∈ T (Φ) has the same rank as
Φ. Thus if Φ is spanned by orthogonal roots and G is semisimple, g

0
= b0 = {0},

so that Gϕ is also semisimple. If Φ is not spanned by orthogonal roots, then
rank ϕ < rank Φ, and so in this case g

0
= b0 is always non-trivial. Thus even if G

is semisimple, it is possible that Gϕ is not. This is why we work with the class of
reductive groups.

Let SO(Φ) denote the set of all subsets of Φ consisting of strongly orthogonal
noncompact roots. Each S ∈ SO(Φ) corresponds to a Cartan subgroup HS of G.
Its Lie algebra satisfies (hS)C = cS(bC) where cS is the Cayley transform associated
to S. Further, HS can be decomposed as HS = TSAS where AS is a split group
and TS is compact modulo the center of G and has identity component T 0

S ⊂ B.
While TS need not be abelian when G is not linear, T 1

S = TS ∩B is always abelian,
since B is. We define H1

S = T 1
SAS . If γ ∈ G′ is any regular semisimple element of

G, then there are S ∈ SO(Φ) and h ∈ H1
S (not unique) such that γ = xhx−1 for

some x ∈ G.
Now for ϕ ∈ T (Φ), we let SO(ϕ) denote the set of all subsets of ϕ consisting of

noncompact roots which are strongly orthogonal in ϕ. Each S ∈ SO(ϕ) corresponds
as above to a Cartan subgroup Hϕ,S = Tϕ,SAϕ,S of Gϕ. In this case we always
have Tϕ,S ⊂ Bϕ, so that H1

ϕ,S = Hϕ,S .
Let SO(Φ, ϕ) = SO(Φ) ∩ SO(ϕ). Then for S ∈ SO(Φ, ϕ) we have Cartan

subgroups HS of G and Hϕ,S of Gϕ. If Si = S ∩ ϕi, 1 ≤ i ≤ k, then

Hϕ,S = (H0,S0 ×H1,S1 × ...×Hk,Sk)/ZB

where H0,S0 = B0 and Hi,Si is the Cartan subgroup of Gi corresponding to Si, 1 ≤
i ≤ k. Now Hi,Si ⊂ H1

S , 0 ≤ i ≤ k, and (h0, h1, ..., hk) 7→ h0h1...hk, hi ∈ Hi,Si , 0 ≤
i ≤ k, factors through Hϕ,S to give an isomorphism fS of Hϕ,S onto H1

S .
The isomorphisms fS : Hϕ,S → H1

S , S ∈ SO(Φ, ϕ), can be used to define a
correspondence of orbits between Gϕ and G. For x ∈ Gϕ and g ∈ G, let Oϕ(x) and
OG(g) denote the orbits of x in Gϕ and g in G respectively. Let x ∈ G′ϕ, the set
of regular semisimple elements in Gϕ. Then there exist S ∈ SO(ϕ) and h ∈ Hϕ,S

(not unique) such that Oϕ(x) = Oϕ(h). We will say that Oϕ(x) is a good orbit in
G′ϕ if S ∈ SO(Φ, ϕ), that is the roots in S are strongly orthogonal, not only in ϕ,
but also in Φ. In the case that Oϕ(x) = Oϕ(h), h ∈ Hϕ,S, is a good orbit, we have
the Cartan subgroup HS of G and the isomorphism fS : Hϕ,S → H1

S . We define

Fϕ(Oϕ(x)) = OG(fS(h)).

We prove in §4 that this definition is independent of the choice of S ∈ SO(ϕ) and
h ∈ Hϕ,S with Oϕ(x) = Oϕ(h).
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Now that we have a correspondence of orbits between Gϕ and G we can define
lifting from Gϕ to G. For x ∈ G, write det(t− 1 + AdG(x)) = DG(x)tn+ terms of
higher degree, where t is an indeterminate. Then x is regular just in caseDG(x) 6= 0,
and we write G′ for the set of regular elements. We also write Dϕ(x) = DGϕ(x), x ∈
Gϕ, for the corresponding function on Gϕ. Let S ∈ SO(Φ, ϕ) and h′ ∈ Hϕ,S such
that h = fS(h′) ∈ H1

S ∩G′. Then we define

DG
ϕ (h′) = |Dϕ(h′)| 12 |DG(h)|− 1

2 .

Then DG
ϕ extends uniquely to a class function on the union of good orbits Oϕ of

G′ϕ such that Fϕ(Oϕ) is a regular orbit in G.
We can now define a lifting from Gϕ to G as follows. For g ∈ G′, let Xϕ(g) denote

a complete set of representatives for the good Gϕ orbits which map to OG(g) under
the orbit correspondence Fϕ. Let Θ be a class function defined on G′ϕ. Now for
g ∈ G′, we define

(LiftGϕΘ)(g) =
∑

h′∈Xϕ(g)

DG
ϕ (h′)Θ(h′).

Since DG
ϕ and Θ are constant on Gϕ orbits, (LiftGϕΘ)(g) does not depend on the

choice of Xϕ(g). It defines a class function on G′.
We now turn to discrete series characters. Let LB denote the set of all τ ∈ ib∗

such that eτ gives a well-defined character of B, and let ρG denote the half-sum of
positive roots in Φ. Then λ ∈ ib∗ is a discrete series parameter for G if 〈λ, α〉 6= 0
for all α ∈ Φ and λ − ρG ∈ LB. Let λ be a discrete series parameter for G and
let ϕ ∈ T (Φ). When we identify g

ϕ
with a subspace of g, we have bϕ = b. Thus

λ is a potential candidate for discrete series parameter of Gϕ. Since ϕ ⊂ Φ, we
have 〈λ, α〉 6= 0 for all α ∈ ϕ. Let ρϕ denote the half-sum of positive roots in ϕ.
Then λ − ρϕ = (λ − ρG) + (ρG − ρϕ). Thus λ − ρϕ ∈ LBϕ = LB if and only if
ρG − ρϕ ∈ LB. If Φ is of type A2n, n ≥ 1, then there is always ϕ ∈ T (Φ) such that
ρG − ρϕ 6∈ LB. However we prove in §5 that if Φ contains no irreducible factors of
type A2n, n ≥ 1, then ρG − ρϕ is in the root lattice of Φ, and hence always is an
element of LB. As a consequence of this result we have the following theorem.

Theorem 1.1. Suppose that Φ contains no irreducible factors of type A2n, n ≥ 1.
Let λ ∈ ib∗ be a discrete series parameter for G. Then for every ϕ ∈ T (Φ), λ is
also a discrete series parameter for Gϕ.

Because of Theorem 1.1, we will assume that Φ contains no irreducible factors
of type A2n, n ≥ 1. For any discrete series parameter λ for G, we let Θλ denote the
character of the discrete series representation (actually relative discrete series if G
has noncompact center) of G corresponding to λ. Similarly, we let Θϕ

λ denote the
character of the (relative) discrete series representation of Gϕ corresponding to λ.

In §6 we will define (and give an explicit formula for) a positive integer c(g) for
each g ∈ G′. It depends only on the orbit of g in G and is constant on connected
components of Cartan subgroups. We also define signs εGϕ (λ) = ±1, ϕ ∈ T (Φ),
corresponding to discrete series parameters of G. The main result of this paper is
the following character formula.

Theorem 1.2. There is a dense open subset G′′ of G′ so that

Θλ(g) = c(g)
∑

ϕ∈T (Φ)

εGϕ (λ)(LiftGϕΘϕ
λ)(g), g ∈ G′′.
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Since all ϕ ∈ T (Φ) are conjugate via W (Φ), the complex Lie algebras (g
ϕ

)C are
all isomorphic for different ϕ. However, the real forms g

ϕ
and hence the groups

Gϕ, can vary with ϕ depending on which roots of ϕ are compact and noncompact.
For a fixed ϕ ∈ T (Φ), the orbit mapping Fϕ need not be surjective, and LiftGϕΘϕ

λ

will be zero on any orbit not in the image of Fϕ. We need the contributions from
all ϕ ∈ T (Φ) in order to recover Θλ on G.

Theorem 1.2 is stated more precisely as Theorem 6.4. Although for simplicity
we have only stated it for discrete series characters here, it is also valid for limits
of discrete series. It is proven by first directly computing the lifts of the discrete
series characters Θϕ

λ using an explicit description of the sets Xϕ(g), g ∈ G′′, given
in Theorem 4.13. Then the machinery of two-structures and the formula from [5]
expressing discrete series constants on G in terms of two-structures are used to
show that the sum of the lifts is Θλ.

Suppose that Φ contains an irreducible factor of type A2n, n ≥ 1. Then there
is an invariant neighborhood Ω of the identity in G with the following properties.
Let ϕ ∈ T (Φ) and let Ω′ϕ denote the union of all good orbits in Gϕ which map into
Ω ∩ G′ via the orbit correspondence Fϕ. Then for any discrete series parameter λ
of G we can define a class function Θϕ

λ on Ω′ϕ which is a discrete series character of
a two-fold cover of Gϕ. Further, we can define LiftGϕΘϕ

λ in Ω∩G′, and the formula
of Theorem 1.2 is valid for g ∈ Ω ∩G′′.

In the case that G is linear, the work of Shelstad [10, 11, 12] on endoscopy gives
a formula for discrete series characters in terms of the lifts of stable discrete series
characters on endoscopic groups. The formula in Theorem 1.2 is independent of
this theory. The group G is not required to be linear, two-structure groups are not
necessarily endoscopic groups, and no stable discrete series characters are used. In
the linear case, a lifting formula similar to Theorem 1.2 expressing stable discrete
series characters on G in terms of stable discrete series characters on two-structure
groups is given in [6]. For an expository account of the results on discrete series
characters in [5, 6] and this paper, see [7].

The organization of the paper is as follows. In §2 we review the definition of and
well-known results about the Cartan subgroups HS , S ∈ SO(Φ). The main result is
Theorem 2.5 which characterizes which elements h ∈ H1

S , h
′ ∈ H1

S′ , S, S
′ ∈ SO(Φ),

are conjugate. In §3 we review discrete series character formulas for G, and rewrite
them in a form convenient for lifting. The main theorem from [5] expanding discrete
series constants in terms of two-structures is stated as Theorem 3.4. The definition
of the groups Gϕ and the orbit correspondence are in §4. The main results are
Lemma 4.8 which shows that the orbit map is well-defined, and Theorem 4.13 which
gives an explicit description of the sets Xϕ(g), g ∈ G′′, occurring in the definition
of lifting. In §5 we review the theory of two-structures and prove results about
two-structures which will be needed. In particular, we prove in Theorem 5.5 that
ρG− ρϕ is in the root lattice of Φ in the case that Φ contains no irreducible factors
of type A2n. In §6 we restate and prove Theorem 1.2 as Theorem 6.4, modulo a
technical result about two-structures, Lemma 6.8. This technical lemma is proven
in §7.

2. Regular Semisimple Orbits in G

In this section we restate well-known results about regular semisimple orbits in
G in a form that is convenient for discrete series character formulas and the orbit
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correspondence. The main result is Theorem 2.5. Proofs of routine lemmas are
omitted.

Let G be a connected reductive Lie group. Given any subgroup H of G we will
use the corresponding lower case underlined letter h for the real Lie algebra of H ,
and hC for its complexification. For any root system Φ, we let W (Φ) denote the
Weyl group of Φ.

Let θ be a Cartan involution of G as in [13] and let K be the fixed point set of
θ. In the case that G has compact center, K is a maximal compact subgroup of
G. In general, K contains the center ZG of G and is compact modulo ZG. Now G
has relative discrete series representations just in case rank G = rank K so that G
has a Cartan subgroup B ⊂ K. We will assume that this is the case. Then B is
a relatively compact Cartan subgroup of G, that is B is compact modulo ZG, and
is unique up to conjugacy. Let Φ = Φ(g

C
, bC) denote the roots of bC in g

C
and

ΦK = Φ(kC, bC) denote the roots of bC in kC. Roots in ΦK are called compact
roots.

Since G is reductive, g = z + g
s

where z is the center of g and g
s

is semisimple.
We also have b = z + bs where bs = b ∩ g

s
. For each α ∈ Φ we let (g

α
)C denote

the root space corresponding to α in (g
s
)C and write H∗α for the element of (bs)C

satisfying

β(H∗α) = 2〈β, α〉/〈α, α〉, ∀ β ∈ Φ.

For each noncompact α ∈ Φ fix a Cayley transform cα. Recall from page 418 of [9]
that we can choose Xα ∈ (g

α
)C, Yα ∈ (g−α)C so that

cα = Ad exp(π/4)(Yα −Xα).

Let SO(Φ) denote the set of all subsets of Φ consisting of strongly orthogonal
noncompact roots. That is, S ∈ SO(Φ) if S ⊂ Φ\ΦK and for any α, β ∈ S with
α 6= β, 〈α, β〉 = 0 and α ± β 6∈ Φ. Each S ∈ SO(Φ) corresponds to a Cartan
subgroup HS of G as follows. Define

tS = {H ∈ b : α(H) = 0 ∀ α ∈ S}, bS =
∑
α∈S

iRH∗α.

Let cS =
∏
α∈S cα. Then HS is the Cartan subgroup of G with Lie algebra

hS = tS ⊕ aS
where

aS = cS(ibS) =
∑
α∈S

R(Xα + Yα).

It satisfies (hS)C = cS(bC) since cS is the identity on tS . Define TS = HS ∩ K
and AS = exp(aS). Then HS = TSAS . Note that TS need not be connected. The
identity component T 0

S of TS is contained in B, but in general not every connected
component of TS will lie in B. Write T 1

S = TS ∩ B,H1
S = T 1

SAS . While TS need
not be abelian when G is not linear, T 1

S is always abelian, since B is. Thus H1
S

is always abelian. When we write h = ta ∈ H1
S we always mean that t ∈ T 1

S and
a ∈ AS .

Fix t ∈ T 1
S . Since tT 0

S ⊂ B and every α ∈ Φ determines a character eα of B, we
can define

Φt,S = {α ∈ Φ : eα(tt0) = 1 ∀ t0 ∈ T 0
S}.
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When S is fixed we will also write Φt = Φt,S , t ∈ T 1
S .

Lemma 2.1. Fix S ∈ SO(Φ). Then we have the following.
(i) T 1

S = (TS ∩BS)T 0
S where BS = exp(bS).

(ii) TS∩BS consists of all elements of the form exp(πi
∑
α∈S nαH

∗
α) where nα ∈ Z

for all α ∈ S.
(iii) T 1

S = {b ∈ B : eα(b) = 1 ∀ α ∈ S}.
(iv) For all t ∈ T 1

S, S ⊂ Φt,S and spans Φt,S.
(v) For b ∈ T 1

S , eβ(b) = ecSβ(b) for all β ∈ Φ.

For S, S′ ∈ SO(Φ), we define S ≡ S′ if tS = tS′ . Let v ∈ W (ΦK), H ∈ b, and
b = exp(H) ∈ B. Then we write vb = exp(vH). This is well-defined and gives
an identification of W (ΦK) with W (G,B) = NG(B)/B. Let G′ denote the set of
regular semisimple elements of G.

Lemma 2.2. (i) Let S, S′ ∈ SO(Φ). Then HS is conjugate to HS′ in G if and
only if there is v ∈W (ΦK) such that S′ ≡ vS.

(ii) Given any x ∈ G′ there are S ∈ SO(Φ) and h ∈ H1
S such that OG(x) =

OG(h).

Lemma 2.3. Let S, S′ ∈ SO(Φ) with Cayley transforms cS , cS′ respectively. Let
h = ta ∈ H1

S ∩G′, h′ = t′a′ ∈ H1
S′ ∩G′.

(i) Suppose there is x ∈ G such that xhx−1 = h′. Then there are v ∈ W (ΦK), s ∈
W (Φt), such that t′ = vt, S′ ≡ vS, log a′ = cS′vsc

−1
S log a, and Ad(x)H =

cS′vsc
−1
S H for all H ∈ hS.

(ii) Suppose that there are v ∈ W (ΦK), s ∈ W (Φt), such that t′ = vt, S′ ≡ vS,
and log a′ = cS′vsc

−1
S log a. Then there is x ∈ G such that h′ = xhx−1 and

Ad(x)H = cS′vsc
−1
S H for all H ∈ hS.

For S, S′ ∈ SO(Φ), t ∈ T 1
S , we will write S′ ≡t S if S′ ≡ S and t ∈ T 1

S′ . In this
case we have tT 0

S = tT 0
S′ so that Φt,S = Φt,S′ . By Lemma 2.1, S′ ≡t S if and only

if S′ ⊂ Φt,S and spans Φt,S .

Lemma 2.4. Fix h = ta ∈ H1
S , v ∈ W (ΦK), s ∈ W (Φt), and S′ ∈ SO(Φ) such

that v−1S′ ≡t S. Then there is an element h′ = t′a′ ∈ H1
S′ given by

t′ = vt, log a′ = cS′vsc
−1
S log a.

For S ∈ SO(Φ), h = ta ∈ H1
S , we will let W0(h) denote the set of all u ∈

W (ΦK) ∩ W (Φt) such that ut = t. Then for (v, s), (v′, s′) ∈ W (ΦK) × W (Φt),
we will say (v, s) ∼ (v′, s′) if there is u ∈ W0(h) such that v′ = vu, s′ = u−1s.
This gives an equivalence relation on W (ΦK) ×W (Φt) and we write [v, s] for the
equivalence class containing (v, s) and W (ΦK , h) for the set of equivalence classes.
We write w = 1 for the equivalence class [1, 1].

Remark 2.1. In Lemma 2.7 of [7] we prove that W0(h) = W (ΦK) ∩W (Φt) if and
only if h is central in HS . Of course if all Cartan subgroups of G are abelian, as is
the case when G is linear, then this implies that W0(h) = W (ΦK)∩W (Φt) always.
Thus in this case we can identify W (ΦK , h) with the set of all w ∈W (Φ) such that
there are v ∈ W (ΦK), s ∈ W (Φt) such that w = vs. However when W0(h) is a
proper subgroup of W (ΦK)∩W (Φt), W (ΦK , h) cannot be identified with a subset
of W (Φ).
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Let v ∈ W (ΦK) and S′ ∈ SO(Φ) with v−1S′ ≡t S. Then for any u ∈ W0(h),
we also have (vu)−1S′ ≡t S since t = u−1t ∈ u−1T 1

v−1S′ = T 1
u−1v−1S′ . Thus we can

write Λ(h) for the set of all pairs (w, S′) such that w = [v, s] ∈ W (ΦK , h), S′ ∈
SO(Φ), and v−1S′ ≡t S. Note that for any w = [v, s] ∈W (ΦK , h), (w, vS) ∈ Λ(h).
However there may be other S′ ∈ SO(Φ) with (w, S′) ∈ Λ(h).

Let (w, S′) ∈ Λ(h), and let (v, s) ∈ W (ΦK) ×W (Φt) such that w = [v, s]. We
will write h′ = (w, S′) · h for the element h′ = t′a′ ∈ H1

S′ given as in Lemma 2.4 by

t′ = vt, log a′ = cS′vsc
−1
S log a.

This definition clearly does not depend on the representative (v, s) for w.
Note that Λ(h) depends only on the connected component hH0

S of h in H1
S . In

fact, as a consequence of Lemma 2.3 (ii), we see that for (w, S′) ∈ Λ(h) there is
x ∈ G such that (w, S′) · h1 = xh1x

−1 for all h1 ∈ hH0
S .

For any x ∈ G, we let OG(x) = {gxg−1 : g ∈ G} denote the orbit of x in G.
Using the above notation, we can rewrite Lemma 2.3 as follows.

Theorem 2.5. Let S ∈ SO(Φ), h ∈ H1
S ∩G′. Then

OG(h) ∩ (
⋃

S′∈SO(Φ)

H1
S′) = {(w, S′) · h : (w, S′) ∈ Λ(h)}.

Lemma 2.6. Let S ∈ SO(Φ), h = ta ∈ H1
S ∩ G′. Fix (w, S′) ∈ Λ(h), and let

h′ = t′a′ = (w, S′) · h. Let (v, s) ∈ W (ΦK) × W (Φt) such that w = [v, s].
Then w−1 = [v−1, vs−1v−1] ∈ W (ΦK , h′), (w−1, S) ∈ Λ(h′) and h = (w−1, S) · h′.
Further, suppose (w′, S′′) ∈ Λ(h′) and let (v′, s′) ∈ W (ΦK) × W (Φt′) such that
w′ = [v′, s′]. Then w′w = [v′v, v−1s′vs] ∈ W (ΦK , h), (w′w, S′′) ∈ Λ(h) and
(w′, S′′) · h′ = (w′w, S′′) · h.

In order to prove the lifting theorem we will need to restrict to a dense open
subset of H1

S ∩G′. Define

H ′′S = {h ∈ H1
S ∩G′ : if (w, S) ∈ Λ(h) and (w, S) · h = h, then w = 1}.(2.1)

Remark 2.2. H ′′S can be a proper subset of H1
S ∩G′. For example, suppose that G

is a simple group of adjoint type with Φ = {±α} of type A1. Then B = H∅ consists
of all elements of the form b(s) = exp(isH∗α) and b(s) = 1 just in case s ∈ πZ.
Further, W (ΦK , b) = W (ΦK) and Λ(b) = {(w, ∅) : w ∈ W (ΦK)} for all b ∈ B.
Suppose that G is noncompact. Then ΦK = ∅, so that B′′ = B ∩ G′. However, if
G is compact, then ΦK = Φ and the reflection sα ∈ W (ΦK). Now b = b(π/2) is
regular since exp(α)(b) = −1, but (sα, ∅) · b = b(−π/2) = b. Thus b 6∈ B′′.

Lemma 2.7. Let S ∈ SO(Φ). Then H ′′S is a dense open subset of H1
S ∩ G′. It is

the set of all h ∈ H1
S such that CG(h) ⊂ HS.

Proof. The first statement is routine. The second follows easily from Lemma 2.3.

Remark 2.3. Suppose that G has abelian Cartan subgroups. Then HS ⊂ CG(h)
for all h ∈ H1

S . Thus in this case h ∈ H ′′S if and only if CG(h) = HS . When G
is the set of real points of a linear algebraic group G, an element g ∈ G is called
strongly regular if its centralizer in G is a (connected) torus. Suppose that h ∈ H1

S

is strongly regular. Then its centralizer in G is the set of real points of a torus of
G, and hence must be equal to HS . Thus h ∈ H ′′S .
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3. Discrete Series on G

In this section we review discrete series character formulas and rewrite them
using the notation of §2. In the case that G has noncompact center these are really
relative discrete series, but this will play no role in the arguments, so we will just
use the term discrete series. For more details see [5, 7, 9].

Fix a choice Φ+ of positive roots for Φ, and define

ρG = ρ(Φ+) =
1
2

∑
α∈Φ+

α.

Let LB denote the set of all τ ∈ E = ib∗ such that exp(τ) is well-defined on B.
Recall that λ ∈ ib∗ is called a discrete series parameter for G if

λ− ρG ∈ LB and 〈λ, α〉 6= 0 ∀ α ∈ Φ.

Further, λ ∈ ib∗ is called a limit of discrete series parameter for G if it is not a
discrete series parameter, but λ− ρG ∈ LB. Let

E′(Φ) = {τ ∈ E : 〈τ, α〉 6= 0 ∀α ∈ Φ}.
For any connected component E∗ of E′(Φ), define

εG(Φ+ : E∗) = εG(E∗) = sign
∏
α∈Φ+

〈α, τ〉, τ ∈ E∗.

Fix a discrete series or limit of discrete series parameter λ of G. If λ is a
discrete series parameter, let E∗ = E∗(λ) denote the connected component of
E′(Φ) containing λ. If λ is a limit of discrete series parameter, let E∗ = E∗(λ) be
a fixed connected component of E′(Φ) such that λ is in the closure of E∗(λ).

Write

∆′G(Φ+ : b) = ∆′G(b) =
∏
α∈Φ+

(1− e−α(b)), b ∈ B,

and define

qG = 1
2 dim(G/K).

Then as in [1, 2, 8], when λ is a discrete series parameter there is a unique (relative)
discrete series representation of G with character Θλ given on regular elements
b ∈ B by

Θλ(b) = εG(E∗) (−1)qG∆′G(b)−1
∑

v∈W (ΦK)

det v evλ−ρG(b).

Note that although εG(E∗), ∆′G(b), and ρG all depend on the choice Φ+ of positive
roots, the character Θλ is independent of this choice.

Now let S ∈ SO(Φ) with corresponding Cayley transform cS and Cartan sub-
group HS . Then cSΦ+ gives a choice of positive roots for Φ(g

C
, (hS)C). For

h ∈ HS , define

∆′G(Φ+ : h) = ∆′G(h) =
∏

α∈cSΦ+

(1− e−α(h)).

For h = ta ∈ H1
S , let

Φ+
R(h) = {α ∈ Φt : α(c−1

S log a) > 0}.
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Define ΦK,t = ΦK∩Φt. Then W (ΦK,t) ⊂W0(h) = {u ∈W (ΦK)∩W (Φt) : ut = t}.
It is possible that W (ΦK,t) is a proper subgroup of W0(h). Define

c(K,h) = [W0(h)/W (ΦK,t)].

Lemma 3.1. For all h = ta ∈ H1
S ∩G′ we have

εG(E∗) (−1)qG∆′G(h) Θλ(h) = c(K,h)
∑

v∈W0(h)\W (ΦK)

det v evλ−ρG(t)

×
∑

s∈W (Φt)

det s c(s : vE∗ : Φ+
R(h)) exp((svλ − ρG)(c−1

S log a)).

Here the constants c(s : vE∗ : Φ+
R(h)) are defined as in [5].

Proof. We will use formula (2.6) from [5], which is a restatement of
Harish-Chandra’s formulas from §23 of [1]. In [5] the results are only stated for
the semisimple finite center case, but as in [8] the formulas are also valid for the
general case. Note that in [5] Θλ was defined without the terms εG(E∗) (−1)qG
and was only a character up to sign. The root system Φ in [5] is our Φt. Thus in
our notation we can rewrite formula (2.6) of [5] as

εG(E∗) (−1)qG∆′G(h) Θλ(h) =
∑

v∈W (ΦK,t)\W (ΦK)

det v evλ−ρG(t)

×
∑

s∈W (Φt)

det s c(s : vE∗ : Φ+
R(h)) exp((svλ− ρG)(c−1

S log a))

=
∑

v∈W0(h)\W (ΦK)

∑
u∈W (ΦK,t)\W0(h)

det(uv) euvλ−ρG(t)

×
∑

s∈W (Φt)

det s c(s : uvE∗ : Φ+
R(h)) exp((suvλ− ρG)(c−1

S log a))

=
∑

v∈W0(h)\W (ΦK)

∑
u∈W (ΦK,t)\W0(h)

det v euvλ−ρG(t)

×
∑

s∈W (Φt)

det s c(su−1 : uvE∗ : Φ+
R(h)) exp((svλ − ρG)(c−1

S log a)).

Fix u ∈W (ΦK)∩W (Φt) and define ψ : Φt → Φt by ψ(α) = uα. Since uΦK = ΦK
and uΦt = Φt, uΦK,t = ΦK,t. Further, for s ∈W (Φt), ψsψ−1 = usu−1. Thus using
(3.1),(3.6) of [5] we have

c(s : vE∗ : Φ+
R(h)) = c(usu−1 : uvE∗ : uΦ+

R(h)) = c(su−1 : uvE∗ : Φ+
R(h)).

Further,

euvλ−ρG (t) = evλ−u
−1ρG(u−1t) = evλ−ρG (u−1t)euρG−ρG(t).

But ρG is a weight for Φ and hence Φt, so that uρG − ρG is in the root lattice of
Φt. Thus euρG−ρG(t) = 1. Now if u ∈ W0(h) ⊂W (ΦK)∩W (Φt), we have u−1t = t
so that

euvλ−ρG(t) = evλ−ρG (t).
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When λ is a limit of discrete series parameter, we define Θλ using the formula
in Lemma 3.1, noting that it depends on the fixed choice of E∗ = E∗(λ). We
can simplify the notation of Lemma 3.1 as follows. Let τ ∈ LB. Then for any
h = ta ∈ H1

S we write

ξτ (h) = eτ (t) exp(τ(c−1
S log a)).

Let w = [v, s] ∈W (ΦK , h), and pick S′ ∈ SO(Φ) such that (w, S′) ∈ Λ(h). (Recall
that such an S′ always exists since we can always take S′ = vS.) Then we define

ξτ (w · h) = ξτ ((w, S′) · h), ∆′G(w · h) = ∆′G((w, S′) · h),

Φ+
R(w · h) = Φ+

R((w, S′) · h).

It is easy to check that ξτ ((w, S′) · h),∆′G((w, S′) · h), and Φ+
R((w, S′) · h) are

independent of the choice of S′. Thus ξτ (w · h),∆′G(w · h), and Φ+
R(w · h) are well-

defined. We also define detw = det v det s, and for λ ∈ ib∗, we write wλ = vsλ.
These definitions are clearly independent of the choice of representative (v, s).

Lemma 3.2. Let w = [v, s] ∈W (ΦK , h), h = ta ∈ H1
S.

(i) For any τ ∈ LB, ξτ (w · h) = ev
−1τ (t) exp((s−1v−1τ)(c−1

S log a)).
(ii) For any α ∈ Φ, ξα(w · h) = ξs−1v−1α(h).
(iii) ∆′G(w · h) = detw ξρG−w−1ρG(h)∆′G(h).
(iv) Φ+

R(w · h) = wΦ+
R(h).

(v) c(s−1 : v−1E∗ : Φ+
R(h)) = c(1 : E∗ : Φ+

R(w · h)).

Proof. Parts (i)-(iv) are routine. Using part (iv),

c(1 : E∗ : Φ+
R(w · h)) = c(1 : E∗ : vsΦ+

R(h)).

Now define ψ : vsΦt → sΦt by ψ(α) = v−1α. Then ψ(vsΦt ∩ ΦK) = sΦt ∩ ΦK so
that using (3.1). (3.6) of [5],

c(1 : E∗ : vsΦ+
R(h)) = c(1 : v−1E∗ : sΦ+

R(h)) = c(s−1 : v−1E∗ : Φ+
R(h)).

Theorem 3.3. Let h ∈ H1
S ∩G′. Then

εG(E∗) (−1)qGΘλ(h)

= c(K,h)
∑

w∈W (ΦK ,h)

∆′G(w · h)−1 ξλ−ρG(w · h) c(1 : E∗ : Φ+
R(w · h)).

Proof. Using Lemma 3.1 and the change of variables s 7→ s−1, v 7→ v−1 we can
write

εG(E∗) (−1)qGΘλ(h) = c(K,h) ∆′G(h)−1
∑

w=[v,s]∈W (ΦK ,h)

detw

× ev−1λ−ρG(t) c(s−1 : v−1E∗ : Φ+
R(h)) exp((s−1v−1λ− ρG)(c−1

S log a)).

Let w = [v, s] ∈W (ΦK , h). Then by Lemma 3.2(iii) we have

∆′G(w · h)−1 = ∆′G(h)−1 detw ξw−1ρG−ρG(h).



2568 R. A. HERB

Since w−1ρG − ρG is in the root lattice of Φ, we can use Lemma 3.2(i) and (ii) to
write

ξw−1ρG−ρG(h)ξλ−ρG (w · h) = ξλ−wρG(w · h)

= ev
−1λ−sρG(t) exp((s−1v−1λ− ρG)(c−1

S log a)).

But ρG − sρG is in the root lattice of Φt so that

ev
−1λ−sρG(t) = ev

−1λ−ρG(t).

Combining this with Lemma 3.2(v), we have∑
w∈W (ΦK ,h)

∆′G(w · h)−1 ξλ−ρG (w · h) c(1 : E∗ : Φ+
R(w · h))

= ∆′G(h)−1
∑

w=[v,s]∈W (ΦK ,h)

detw ev
−1λ−ρG(t)

× c(s−1 : v−1E∗ : Φ+
R(h)) exp((s−1v−1λ− ρG)(c−1

S log a)).

The constants appearing in the discrete series character formula of Theorem 3.3
are of the form c(1 : E∗ : Φ+

t ) where Φt is a root system spanned by strongly
orthogonal noncompact roots, Φ+

t is a choice of positive roots for Φt, and E∗ is a
connected component of E′(Φ). These constants satisfy the following identity. See
[5] for details.

Let T (Φt) denote the set of all two-structures for Φt. We will say ψ ∈ T (Φt) is of
noncompact type if ψ is spanned by a collection of strongly orthogonal noncompact
roots of Φt, that is there is S′ ∈ SO(Φ) such that S′ ⊂ ψ and spans ψ. This is
equivalent to the condition that all long roots of ψ are noncompact in Φt, where by
a long root of ψ we mean any root in an A1 factor and any long root in a B2 ' C2

factor. Write Tn(Φt) for the two-structures of noncompact type for Φt.
The following theorem is proven in [5]. It contains signs ε(ψ : Φ+

t ) = ±1 corre-
sponding to a choice of positive roots Φ+

t for Φt and ψ ∈ T (Φt). The definition of
these signs is given in (5.1). It also contains a constant c(Φt) which is defined as
follows. For any ψ ∈ T (Φt), L(Φt) ⊂ L(ψ) where L(Φt), L(ψ) denote the weight
lattices of Φt and ψ respectively. Let

c(Φt) = [L(ψ) : L(Φt)].(3.1)

It is independent of the choice of ψ since all ψ ∈ T (Φt) are conjugate via W (Φt).
Its values for Φt irreducible are given by the following table, which also gives the
type of ψ in each case.

Φt B2n B2n+1 C2n C2n+1 D2n E7 E8 F4 G2

ψ Bn2 Bn2 ×B1 Cn2 Cn2 × C1 A2n
1 A7

1 A8
1 B2

2 A2
1

c(Φt) 2n−1 2n 1 1 2n−1 23 24 2 2

Theorem 3.4. Let E∗ be any connected component of E′(Φ) and let Φ+
t be any

choice of positive roots for Φt. Then

c(1 : E∗ : Φ+
t ) = c(Φt)

∑
ψ∈Tn(Φt)

ε(ψ : Φ+
t ) c(1 : E∗ : ψ ∩ Φ+

t ).
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4. Definition of Gϕ and the orbit correspondence

Let Φ be any root system. Then a root subsystem ϕ ⊂ Φ is called a two-structure
for Φ if it satisfies the following two properties.

(i) Every irreducible factor of ϕ is of type A1 or B2 ' C2.
(ii) Let ϕ+ be any choice of positive roots for ϕ. Then if w ∈W (Φ) with wϕ+ =

ϕ+ we have detw = 1.
Let T (Φ) denote the set of all two-structures for Φ.

Note that ϕ ∈ T (Φ) is a root subsystem of Φ, that is a subset of Φ which is
closed under its own reflections. It is not necessarily a subroot system. That is,
there may be α, β ∈ ϕ such that α + β ∈ Φ, but α + β 6∈ ϕ. However, let ϕ0 be
an irreducible factor of ϕ, and let Φ0 denote the intersection of Φ with the linear
subspace of ib∗ spanned by ϕ0. Then Φ0 is a subroot system of Φ with the same
rank as ϕ0. Since there are no root sytems of the same rank properly containing a
root system of type A1 or B2, we must have ϕ0 = Φ0. Thus ϕ0 is a subroot system
of Φ.

We want to associate to every ϕ ∈ T (Φ) a group Gϕ which shares certain Cartan
subgroups with G. Fix ϕ ∈ T (Φ), and write ϕ = ϕ1 ∪ ... ∪ ϕk for its decompo-
sition into irreducible factors. Each ϕi, 1 ≤ i ≤ k, is a subroot system of Φ and
corresponds to a Lie subalgebra g

i
of g as follows.

As in §2, for each α ∈ Φ we have the root space (g
α

)C and the normalized root
vector H∗α ∈ (bs)C. Now define

(bi)C =
∑
α∈ϕi

CH∗α, bi = b ∩ (bi)C =
∑
α∈ϕi

RiH∗α;

(g
i
)C = (bi)C +

∑
α∈ϕi

(g
α

)C, g
i

= g ∩ (g
i
)C.

Let σ be the involution of g
C

with fixed points g. For each α ∈ Φ we have
ασ ∈ Φ defined by

ασ(H) = α(σH), H ∈ bC.
Since α takes pure imaginary values on b, we have ασ = −α for all α ∈ Φ. Thus
for all α ∈ Φ,

σ(H∗α) = H∗ασ = H∗−α, σ((g
α

)C) = (g
ασ

)C = (g−α)C.

Thus (g
i
)C is stable under σ. Now the restriction of σ to (g

i
)C is an involution

with fixed points g
i
. Thus g

i
is a real form of (g

i
)C.

Since ϕi is of type A1 or B2 ' C2, (g
i
)C is isomorphic to either sl(2,C) or

so(5,C) ' sp(4,C). Thus g
i

is isomorphic to one of

sl(2,R), su(2), so(3, 2), so(4, 1), or so(5).

We also define

g
0

= b0 = {H ∈ b : α(H) = 0 ∀ α ∈ ϕ} and ϕ0 = ∅.
Let Gi be the connected subgroup of G corresponding to g

i
, Ki = Gi ∩ K,

Bi = exp(bi) = Gi ∩B. Let G0 ×G1 × ...×Gk denote the abstract direct product
of the groups Gi, 0 ≤ i ≤ k, and define f : G0 × ...×Gk → G by

f(g0, ..., gk) = g0...gk, gi ∈ Gi, 0 ≤ i ≤ k.
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Here g0...gk denotes the product in G of the elements gi ∈ Gi ⊂ G. Note that
f depends on the ordering of the irreducible factors ϕi, 1 ≤ i ≤ k, and is not
necessarily a group homomorphism, since elements from the different subgroups Gi
do not necessarily commute with each other as elements of G. This is because,
although roots in different irreducible factors of ϕ are orthogonal to each other,
they need not be strongly orthogonal as elements of Φ.

However, since Bi ⊂ B, 0 ≤ i ≤ k, and B is abelian, f : B0 × ... × Bk → B is
a group homomorphism. Let ZB denote the kernel of this homomorphism, and let
Zi denote the center of Gi, 0 ≤ i ≤ k. The following lemma is easy to check

Lemma 4.1. f : B0× ...×Bk → B is surjective and ZB ⊂ Z0× ...×Zk is a central
subgroup of G0 × ...×Gk.

Define

Gϕ = (G0 × ...×Gk)/ZB, Kϕ = (K0 × ...×Kk)/ZB,(4.1)

Bϕ = (B0 × ...×Bk)/ZB, Zϕ = (Z0 × ...× Zk)/ZB.(4.2)

Then Gϕ and Kϕ are connected reductive Lie groups, Bϕ is a Cartan subgroup of
both Gϕ and Kϕ, and Zϕ is the center of Gϕ. The Lie algebra g

ϕ
=
∑k

i=0 gi of Gϕ
can be identified with a subset, but not necessarily a subalgebra, of g. Note that
each g

i
is stable under the Cartan involution θ of g so that the restriction of θ to

Gi is a Cartan involution of Gi. Further, Ki is the set of fixed points of θ in Gi.
Thus θ induces a Cartan involution of Gϕ with fixed points Kϕ.

Let exp denote the exponential mapping from g into G, and expϕ denote the
exponential mapping of g

ϕ
into Gϕ. The Cartan subalgebra b =

∑k
i=0 bi can be

identified with the Lie algebra of Bϕ and is a Cartan subalgebra of g
ϕ

and kϕ.
Further,

Φ((g
ϕ

)C, bC) = ϕ, Φ((kϕ)C, bC) = ϕK = ϕ ∩ ΦK .

The Weyl group W (ϕK) generated by reflections in the compact roots ϕK = ϕ∩ΦK
of ϕ is naturally a subgroup ofW (ΦK). For H ∈ b, b = expϕ(H), v ∈ W (ϕK), define
vb = expϕ(vH). The following lemma is also routine.

Lemma 4.2. (i) The mapping fB : Bϕ → B induced by f is an isomorphism.
(ii) fB(expϕ(H)) = exp(H) for all H ∈ b.
(iii) fB(vb) = vfB(b) for all b ∈ Bϕ, v ∈W (ϕK).
(iv) ZG ⊂ fB(Zϕ).
(v) Kϕ/Zϕ and Bϕ/Zϕ are compact.

We have seen that Gϕ together with the subgroups Kϕ and Bϕ satisfies the same
hypotheses as our original group G with its subgroups K and B. Thus the results
of §2 and §3 can be applied to the group Gϕ.

Remark 4.1. Suppose that Φ contains no irreducible factors of type Bn, n ≥ 3,
or F4. Then for any ϕ ∈ T (Φ), roots from different irreducible factors of ϕ are
strongly orthogonal. Thus for 0 ≤ i 6= j ≤ k, Gi and Gj commute inside G. Hence
f : G0 × ... × Gk → G is a group homomorphism, and it is easy to see that the
kernel of f is ZB. Thus Gϕ is embedded as a subgroup of G in this case.
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Now for ϕ ∈ T (Φ) as above, we let SO(ϕ) denote the set of all subsets of ϕ
consisting of noncompact roots which are strongly orthogonal in ϕ. Since ϕK =
ϕ ∩ ΦK , noncompact roots in ϕ are also noncompact in Φ. Further, the inner
product on ϕ is the restriction of the inner product in Φ. However, for α, β ∈ ϕ
with 〈α, β〉 = 0, α strongly orthogonal to β in ϕ means that α± β 6∈ ϕ, while α, β
strongly orthogonal in Φ means α ± β 6∈ Φ. Thus SO(ϕ) need not be a subset of
SO(Φ).

For each noncompact root α ∈ ϕ ⊂ Φ we have the fixed root vectors Xα, Yα used
to define the Cayley transform cα. Then since Xα, Yα ∈ (g

ϕ
)C,

cϕ,α = Ad expϕ(π/4)(Yα −Xα)

is a Cayley transform defined on (g
ϕ

)C. Now each S ∈ SO(ϕ) corresponds as in
§2 to a Cartan subgroup Hϕ,S = Tϕ,SAϕ,S of Gϕ with Cartan subalgebra hϕ,S.
Let Si = S ∩ ϕi, 0 ≤ i ≤ k. Then S =

⋃
i Si, and each Si is a set of strongly

orthogonal noncompact roots in ϕi. Thus Si corresponds to a Cartan subgroup
Hi,Si = Ti,SiASi of Gi. Since ZB ⊂ Z0 × ... × Zk, it is contained in every Cartan
subgroup of G0 × ...×Gk, and

Hϕ,S = (H0,S0 × ...×Hk,Sk)/ZB.

Lemma 4.3. (i) For any S ∈ SO(ϕ) and 0 ≤ i ≤ k, Ti,Si ⊂ Bi. Thus Tϕ,S ⊂ Bϕ.
(ii) Let S ∈ SO(ϕ) and h = ta ∈ Hϕ,S. Then

W (ϕK) ∩W (ϕt) = W (ϕK,t).

Proof. For i = 0, G0 = B0 is abelian, and S0 = ∅, T0,S0 = B0. For 1 ≤ i ≤ k, Gi
is locally isomorphic to one of SL(2,R), SU(2), SO(3, 2), SO(4, 1), or SO(5). It is
trivial that these properties holds for the compact groups and easy to check that
they hold in the other three cases. They are also independent of local isomorphism
class.

Every Cartan subgroup Hϕ of Gϕ is conjugate to one of the form Hϕ,S , S ∈
SO(ϕ). However if the roots in S are not strongly orthogonal as elements of Φ,
Hϕ,S will not correspond to a Cartan subgroup HS of G. This is because the
groups Ai,Si will not commute with each other, and so the restriction of f to
(H1,S1 × ...×Hk,Sk) is not a group homomorphism. Thus we restrict our attention
to strongly orthogonal sets in

SO(Φ, ϕ) = {S ∈ SO(Φ) : S ⊂ ϕ} = SO(Φ) ∩ SO(ϕ).

Lemma 4.4. Let S, S′ ∈ SO(ϕ) such that Hϕ,S and Hϕ,S′ are conjugate in Gϕ.
Then S ∈ SO(Φ, ϕ) if and only if S′ ∈ SO(Φ, ϕ).

Proof. Since Hϕ,S and Hϕ,S′ are conjugate in Gϕ, by Lemma 2.2 there is v ∈
W (ϕK) such that vS ≡ S′. Since W (ϕK) ⊂ W (ΦK), we know that S ∈ SO(Φ)
if and only if vS ∈ SO(Φ). Thus it suffices to show that for S, S′ ∈ SO(ϕ) with
S′ ≡ S, we have S ∈ SO(Φ) if and only if S′ ∈ SO(Φ). But ϕ is the union of
irreducible factors ϕi of type A1 or B2, and it is easy to see for these two cases that
if Si, S′i ∈ SO(ϕi) with Si ≡ S′i, then Si ∪−Si = S′i ∪−S′i. Thus if S ≡ S′, we have
S ∪ −S = S′ ∪ −S′. Thus S ∈ SO(Φ) if and only if S′ ∈ SO(Φ).

Recall that g
ϕ

is a subset, although not necessarily a subalgebra, of g. However,
we have the following easy lemma.
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Lemma 4.5. For S ∈ SO(Φ, ϕ), hϕ,S = hS, and cϕ,SH = cSH for all H ∈ bC.

Because of Lemma 4.5 we will drop the subscripts ϕ and write hS and cS for the
Cartan subalgebra and Cayley transform corresponding to S ∈ SO(Φ, ϕ) in either
g or g

ϕ
.

Lemma 4.6. Let S ∈ SO(Φ, ϕ). For each 0 ≤ i ≤ k, Hi,Si is a subgroup of H1
S.

Further, the homomorphism fS : Hϕ,S → H1
S induced by f is an isomorphism. It

satisfies fS(expϕ(H)) = expH for all H ∈ hS.

Proof. By definition, HS = CG(hS). Fix 0 ≤ i ≤ k. Then Hi,Si = Ti,SiAi,Si =
CGi(hi,Si). Clearly Ai,Si = exp ai,Si ⊂ exp aS = AS . Let ti ∈ Ti,Si . We know
ti centralizes hi,Si . We must show that it centralizes hj,Sj = for all j 6= i. But
by Lemma 4.3, ti ∈ Bi. Thus it centralizes tj,Sj ⊂ b. Now aj,Sj is generated by
elements of the form Xβ + Yβ , β ∈ Sj . Now ti ∈ Bi = exp(

∑
α∈ϕi iRH

∗
α), and

β(H∗α) = 0 for all β ∈ Sj , α ∈ ϕi. Thus ti centralizes aj,Sj . We have seen that Hi,Si

centralizes all of hS so that Hi,Si = CGi(hS) = Gi ∩HS ⊂ HS . By Lemma 4.3, we
in fact have Hi,Si = Ti,SiAi,Si ⊂ (TS ∩B)AS = H1

S .
Since H1

S is abelian we know that

f : H0,S0 × ...×Hk,Sk → H1
S

is a group homomorphism. Suppose that (h0, ..., hk) is in the kernel of f . Write
hi = tiai where ti ∈ Ti,Si , ai ∈ Ai,Si . Then f(h0, ..., hk) = t0...tka0...ak = 1 implies
that t0....tk = 1 and a0...ak = 1. Since ti ∈ Bi, this implies that (t0, ..., tk) ∈ ZB.
But since AS = A0,S0 ...Ak,Sk is a direct product, a0...ak = 1 implies that ai =
1, 0 ≤ i ≤ k. Thus (h0, ..., hk) = (t0, ..., tk) ∈ ZB.

We have shown that fS : Hϕ,S → H1
S is injective. Now suppose that h = ta ∈ H1

S

where t ∈ TS ∩B and a ∈ AS . Since AS = A0,S0 ...Ak,Sk is a direct product, there
are unique ai ∈ Ai,Si , 0 ≤ i ≤ k, such that a = a0...ak. Since t ∈ B = B0...Bk
there are (not necessarily unique) bi ∈ Bi, 0 ≤ i ≤ k, such that t = b0...bk. Let
0 ≤ i ≤ k. Then t = b0...bk ∈ TS centralizes hS and hence hi,Si . But as above, for
each 0 ≤ j 6= i ≤ k, every bj ∈ Bj centralizes hi,Si . Thus bi centralizes hi,Si and
hence is an element of Hi,Si ∩ Bi = Ti,Si . Thus hi = biai ∈ Hi,Si , 0 ≤ i ≤ k, and
f(h0, ..., hk) = ta = h. Thus fS is surjective.

Finally, for any H =
∑

0≤i≤kHi ∈ hS ,

fS(expϕ(H)) = f(exp(H0), ..., exp(Hk)) = exp(H0)... exp(Hk) = exp(H).

Let S ∈ SO(ϕ), h = ta ∈ Hϕ,S . By Lemma 4.3 (ii) we have W (ϕK) ∩W (ϕt) =
W (ϕK,t). Thus ut = t for all u ∈ W (ϕK) ∩ W (ϕt) so that W0(h) = W (ϕK) ∩
W (ϕt) = W (ϕK,t). Thus if we define

W (ϕK , h) = {[v, s] : (v, s) ∈ W (ϕK)×W (ϕt)}
as in §2, we have [v, s] = [v′, s′] if and only if vs = v′s′. Thus we can identify
W (ϕK , h) with the set of all elements w ∈ W (ϕ) such that w = vs for some
v ∈ W (ϕK), s ∈ W (ϕt). As in §2, for S, S′ ∈ SO(ϕ), h = ta ∈ Hϕ,S, we will
write S′ ≡t S if S′ ≡ S and t ∈ Tϕ,S′. We let Λ(ϕ, h) denote the set of all
pairs (w, S′) such that w = vs ∈ W (ϕK , h) and v−1S′ ≡t S. For h = ta ∈
Hϕ,S, (w, S′) ∈ Λ(ϕ, h), w = vs, we define (w, S′) · h = h′ = t′a′ ∈ Hϕ,S′ where
t′ = vt, logϕ a

′ = cS′wc
−1
S logϕ(a). It is easy to check the following.
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Lemma 4.7. Let S ∈ SO(Φ, ϕ), h′ = t′a′ ∈ Hϕ,S , h = ta = fS(h′).
(i) ϕt′ = ϕ ∩ Φt.
(ii) Let (w, S′) ∈ Λ(ϕ, h′) and write w = vs, v ∈ W (ϕK), s ∈ W (ϕt′). Then

S′ ∈ SO(Φ, ϕ) and v−1S′ ≡t S.

Let S ∈ SO(Φ, ϕ), h′ = t′a′ ∈ Hϕ,S , h = ta = fS(h′). Then by Lemma 4.7
(i), W (ϕt′) ⊂ W (Φt). Thus for every v ∈ W (ϕK), s ∈ W (ϕt′), we have (v, s) ∈
W (ΦK)×W (Φt). Suppose that v, v′ ∈ W (ϕK), s, s′ ∈ W (ϕt′), such that vs = v′s′.
Then there is u ∈ W (ϕK) ∩W (ϕt′ ) = W (ϕK,t′) ⊂ W (ΦK,t) ⊂ W0(h) such that
v′ = vu, s′ = u−1s, and so [v′, s′] = [v, s] as elements of W (ΦK , h). Thus vs 7→
[v, s] gives a well-defined mapping from W (ϕK , h′) into W (ΦK , h). Suppose that
[v, s] = 1. Then v = s−1 ∈ W0(h). In particular, vs = 1. Thus the mapping
from W (ϕK , h′) into W (ΦK , h) defined by vs 7→ [v, s] is injective. We will use
this mapping to identify W (ϕK , h′) with a subset of W (ΦK , h). Now let (w, S′) ∈
Λ(ϕ, h′), w = vs. Then by Lemma 4.7 (ii) we have S′ ∈ SO(Φ, ϕ), and v−1S′ ≡t S.
Thus ([v, s], S′) ∈ Λ(h). Thus we can also identify Λ(ϕ, h′) with a subset of Λ(h).

Let G′ϕ denote the set of regular semisimple elements of Gϕ. For any x ∈ Gϕ,
let Oϕ(x) denote the orbit of x in Gϕ.

Lemma 4.8. Let S, S′ ∈ SO(ϕ), h ∈ Hϕ,S ∩ G′ϕ, h′ ∈ Hϕ,S′ ∩ G′ϕ, such that
Oϕ(h) = Oϕ(h′). Then S ∈ SO(Φ, ϕ) if and only if S′ ∈ SO(Φ, ϕ). Further,
in the case that S, S′ ∈ SO(Φ, ϕ), then OG(fS(h)) = OG(fS′(h′)). Finally, let
S ∈ SO(Φ, ϕ), h ∈ Hϕ,S, (w, S′) ∈ Λ(ϕ, h). Then fS′((w, S′) · h) = (w, S′) · fS(h).

Proof. Since Oϕ(h) = Oϕ(h′), Hϕ,S and Hϕ,S′ are conjugate in Gϕ. Thus by
Lemma 4.4, S ∈ SO(Φ) if and only if S′ ∈ SO(Φ).

Assume that S, S′ ∈ SO(Φ, ϕ). Write h = ta ∈ Hϕ,S, h
′ = t′a′ ∈ Hϕ,S′ . Since

Oϕ(h) = Oϕ(h′) we can apply Theorem 2.5 to the group Gϕ to conclude that there
are v ∈ W (ϕK), s ∈W (ϕt) such that (vs, S′) ∈ Λ(ϕ, h) and h′ = (vs, S′) · h. Then

t′ = vt, S′ ≡ vS, logϕ a
′ = cS′vsc

−1
S logϕ a.

Now we can write fS(h) = fB(t)fS(a) where fB(t) ∈ T 1
S is the image of t ∈

Tϕ,S ⊂ Bϕ under the isomorphism fB, fS(a) = exp(logϕ a) ∈ AS and fS′(h′) =
fB(t′)fS′(a′) where fB(t′) ∈ T 1

S′ , fS′(a
′) = exp(logϕ a′) ∈ AS′ . Now by Lemma

4.2, when we consider W (ϕK) as a subgroup of W (ΦK), fB(t′) = fB(vt) = vfB(t).
Further

log(fS′(a′)) = logϕ a
′ = cS′vsc

−1
S logϕ a = cS′vsc

−1
S log(fS(a)).

Thus fS′(h′) = ([v, s], S′) · fS(h), and by Theorem 2.5, fS(h) and fS′(h′) are con-
jugate in G.

Finally, let S ∈ SO(Φ, ϕ), h ∈ Hϕ,S, (w, S′) ∈ Λ(ϕ, h). Write w = vs and
(vs, S′) · h = t′a′. Then by the above argument, fS′(h′) = ([v, s], S′) · fS(h).

We will use the isomorphisms fS : Hϕ,S → H1
S , S ∈ SO(Φ, ϕ), to define a

correspondence of orbits between Gϕ and G. Let γ ∈ G′ϕ. Then there exist S ∈
SO(ϕ) and h ∈ Hϕ,S (not unique) such that Oϕ(γ) = Oϕ(h). We will say that
Oϕ(γ) is a good orbit in G′ϕ if S ∈ SO(Φ, ϕ). In the case that Oϕ(γ) = Oϕ(h), h ∈
Hϕ,S, is a good orbit, we have the Cartan subgroup HS of G and the isomorphism
fS : Hϕ,S → HS given by Lemma 4.6. We define

Fϕ(Oϕ(γ)) = OG(fS(h)).(4.3)
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By Lemma 4.8, the definitions of good orbit and the mapping Fϕ are independent
of the choice of S ∈ SO(ϕ) and h ∈ Hϕ,S with Oϕ(γ) = Oϕ(h).

Fix S ∈ SO(Φ) and h ∈ H1
S ∩G′. Define

W (ΦK , ϕ, h) = {w ∈W (ΦK , h) : ∃S′ ∈ SO(Φ, ϕ) such that (w, S′) ∈ Λ(h)}.
The following two lemmas are an easy consequence of Theorem 2.5 applied to G

and Gϕ.

Lemma 4.9. Let w ∈ W (ΦK , ϕ, h) and suppose that S′, S′′ ∈ SO(Φ, ϕ) such that
(w, S′), (w, S′′) ∈ Λ(h). Then

Oϕ(f−1
S′ ((w, S′) · h)) = Oϕ(f−1

S′′ ((w, S
′′) · h)).

For w ∈W (ΦK , ϕ, h), we will write

O(ϕ,w · h) = Oϕ(f−1
S′ ((w, S′) · h))

where S′ ∈ SO(Φ, ϕ) such that (w, S′) ∈ Λ(h). By Lemma 4.9, it is independent of
the choice of S′.

Lemma 4.10. Let S ∈ SO(Φ) and h ∈ H1
S ∩G′. Then

F−1
ϕ (OG(h)) = {O(ϕ,w · h) : w ∈W (ΦK , ϕ, h)}.

For w ∈W (ΦK , ϕ, h), let S′ ∈ SO(Φ, ϕ) such that (w, S′) ∈ Λ(h). We will write
W (ϕK , w ·h) = W (ϕK , h′) where h′ = f−1

S′ ((w, S′) ·h) ∈ Hϕ,S′ . By Lemma 4.7 and
the remark preceding Lemma 2.4, ϕS′,t′ = ϕ ∩ ΦS′,vt is independent of the choices
of S′, so that W (ϕK , w · h) is also independent of this choice.

Let w1 ∈ W (ΦK , ϕ, h), w ∈ W (ϕK , w1 · h). Then there is an element ww1 ∈
W (ΦK , h) defined as in Lemma 2.6.

Lemma 4.11. Let w1 ∈ W (ΦK , ϕ, h). Then for any w ∈ W (ϕK , w1 · h), ww1 ∈
W (ΦK , ϕ, h).

Proof. Write w1 = [v1, s1] where v1 ∈W (ΦK) and s1 ∈W (Φt) and w = [v, s] where
v ∈W (ϕK), s ∈W (ϕ ∩ Φv1t). Then as in Lemma 2.6 we have

ww1 = [vv1, v
−1
1 sv1s1]

where vv1 ∈ W (ΦK) and v−1
1 sv1s1 ∈ W (Φt). Let S1 ∈ SO(Φ, ϕ) such that

(w1, S1) ∈ Λ(h). Since S1 ∈ SO(Φ, ϕ) and v ∈ W (ϕK), vS1 ∈ SO(Φ, ϕ). Since
S1 ≡ v1S and v1t ∈ T 1

S1
, then vS1 ≡ vv1S and vv1t ∈ T 1

vS1
. Thus (ww1, vS1) ∈ Λ(h)

and so ww1 ∈ W (ΦK , ϕ, h).

We want to characterize exactly which of the orbits O(ϕ,w · h), w ∈W (Φ, ϕ, h),
are equal. For this we need an extra regularity condition. Recall that in (2.1) we
defined

H ′′S = {h ∈ H1
S ∩G′ : if (w, S) ∈ Λ(h) and (w, S) · h = h, then w = 1}.

Let w1, w2 ∈ W (ΦK , ϕ, h). Then we write w2 ∼ϕ,h w1, or more simply w2 ∼ w1, if
there is w ∈ W (ϕK , w1 · h) such that w2 = ww1.

Lemma 4.12. Let h ∈ H ′′S .
(i) Let w1, w2 ∈W (ΦK , ϕ, h). Then

O(ϕ,w1 · h) = O(ϕ,w2 · h)

if and only if w2 ∼ϕ,h w1. In particular, w2 ∼ϕ,h w1 is an equivalence relation
on W (Φ, ϕ, h).
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(ii) Let wi, 1 ≤ i ≤ p, be a complete set of representatives for the equivalence
classes in W (ΦK , ϕ, h) given by ∼ϕ,h. Let σ ∈ W (ΦK , ϕ, h). Then there are
unique 1 ≤ i ≤ p and w ∈W (ϕK , wi · h) such that σ = wwi.

Proof. (i) Let S1, S2 ∈ SO(Φ, ϕ) such that (wi, Si) ∈ Λ(h), i = 1, 2. Write

h′i = f−1
Si

((wi, Si) · h), i = 1, 2.

Then by definition

O(ϕ,wi · h) = Oϕ(f−1
Si

((wi, Si) · h)) = Oϕ(h′i), i = 1, 2.

By Theorem 2.5, Oϕ(h′1) = Oϕ(h′2) if and only if there is w ∈ W (ϕK , h′1) =
W (ϕK , w1 · h) such that (w, S2) ∈ Λ(ϕ, h′1) and h′2 = (w, S2) · h′1. Now by Lemmas
2.7 and 4.8, h′2 = (w, S2) · h′1 if and only if

h = (w−1
2 , S) · (w2, S2) · h = (w−1

2 , S) · fS2(h′2)

= (w−1
2 , S) · (w, S2) · fS1(h′1) = (w−1

2 w, S) · (w1, S1) · h = (w−1
2 ww1, S) · h.

Thus Oϕ(h′1) = Oϕ(h′2) if and only if there is w ∈W (ϕK , w1 · h) such that

h = (w−1
2 ww1, S) · h.

Now since h ∈ H ′′S , this is if and only if w−1
2 ww1 = 1 so that w2 = ww1.

(ii) Let σ ∈ W (ΦK , ϕ, h). Since ∼ is an equivalence relation, there is a unique
1 ≤ i ≤ p so that σ ∼ wi. Thus there is w ∈ W (ϕK , wi · h) such that σ = wwi.
Suppose that w′ ∈ W (ϕK , wi · h) such that σ = w′wi. Write wi = [vi, si], w =
[v, s], w′ = [v′, s′], vi ∈ W (ΦK), si ∈ W (Φt), v, v′ ∈ W (ϕK), s, s′ ∈ W (ϕvit). Then
if wwi = w′wi we must have vsvisi = v′s′visi as elements of W (Φ) so that vs = v′s′.
But recall that Lemma 4.3 (ii) implies that w = [v, s] = w′ = [v′, s′] as elements of
W (ϕK , wi · h) if and only if vs = v′s′.

For γ ∈ G′, let Xϕ(γ) denote a complete set of representatives for the good Gϕ
orbits which map to OG(γ) under the orbit correspondence Fϕ. As an immediate
consequence of Lemmas 4.10 and 4.12 we have the following.

Theorem 4.13. Let h ∈ H ′′S , and let wi, 1 ≤ i ≤ p, be a complete set of representa-
tives for the equivalence classes in W (ΦK , ϕ, h) given by ∼ϕ,h. For each 1 ≤ i ≤ p,
fix Si ∈ SO(Φ, ϕ) such that (wi, Si) ∈ Λ(h). Then we can take

Xϕ(h) = {f−1
Si

((wi, Si) · h) : 1 ≤ i ≤ p}.

5. Two-Structures

In this section we review basic facts about two-structures and prove results which
will be needed for the lifting of discrete series characters. As in §4 we let T (Φ)
denote the set of all two-structures for Φ.

Fix a choice Φ+ of positive roots, and let ϕ ∈ T (Φ). Let B be the set of positive
long roots of ϕ, where by a long root of ϕ we mean any root in an A1 factor or any
long root in a B2 ' C2 factor. Then B is an orthogonal basis for ϕ. Suppose that
β ∈ Φ is orthogonal to every α ∈ B. Then β is orthogonal to ϕ and the reflection
sβ in β is an element of W (Φ) with det sβ = −1 and sβϕ+ = ϕ+. This contradicts
the definition of two-structures. Thus no root of Φ is orthogonal to every α ∈ B.

Choose an ordering {α1, ..., αn} of B which satisfies the following condition. Sup-
pose that two roots of B are in the same irreducible factor of typeB2 of ϕ. Then they
should be adjacent in the ordering so that they are αi, αi+1 for some 1 ≤ i ≤ n− 1.
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Now since they are long roots in a factor of type B2,
1
2 (±αi ± αi+1) are roots in ϕ.

We order αi, αi+1 so that 1
2 (αi − αi+1) ∈ Φ+. Since no root of Φ is orthogonal to

every α ∈ B, we can use the lexicographic ordering with respect to B to define a
new choice of positive roots for Φ which we will denote by Φ+(B). Now there is a
unique w ∈ W (Φ) such that Φ+(B) = wΦ+. As in page 501 of [9] we define

ε(ϕ : Φ+) = detw.(5.1)

Lemma 5.1. The definition of ε(ϕ : Φ+) is independent of the choice of ordering
of B used, so long as the ordering satisfies the above condition for each irreducible
factor of ϕ of type B2.

Proof. In the case that Φ is spanned by strongly orthogonal roots so that rank Φ =
rank ϕ, problems in page 513 of [9] show how to prove that ε(ϕ : Φ+) is well-defined.
We will modify this proof to prove the result in the cases that Φ is not spanned
by strongly orthogonal roots. We may as well assume that Φ is irreducible. In this
case all roots of Φ have the same length, so there are no factors of type B2 in ϕ
and hence no restrictions on the ordering of B.

Let {α1, ..., αn} be an ordering of B. Let Φ+
1 be the positive roots corresponding

to this ordering, and let Φ+
2 be the positive roots corresponding to the ordering

where αi and αi+1 are interchanged for some 1 ≤ i ≤ n − 1. If Φ+
1 = w1Φ+ and

Φ+
2 = w2Φ+, then Φ+

2 = w2w
−1
1 Φ+

1 . Thus to show detw1 = detw2 it suffices to
show that Φ+

1 ∩ Φ−2 contains an even number of roots.
For any γ ∈ Φ, define ci = ci(γ) = 〈αi, γ〉/〈αi, αi〉, 1 ≤ i ≤ n. Then Φ+

1 ∩ Φ−2
consists of all roots γ such that c1 = ... = ci−1 = 0, ci > 0, and ci+1 < 0. Thus γ
has the form

γ = ciαi + ci+1αi+1 + λ

where λ is in the real vector space spanned by Φ, is orthogonal to α1, ..., αi, αi+1, but
is not necessarily a root. Further, λ 6= 0 since αi and αi+1 are strongly orthogonal,
and all roots of Φ have the same length. Now

γ′ = −sαisαi+1γ = ciαi + ci+1αi+1 − λ
is also an element of Φ+

1 ∩ Φ−2 . Thus the roots in Φ+
1 ∩ Φ−2 can be grouped in

pairs.

Define

W (ϕ : Φ+) = {w ∈W (Φ) : w(ϕ ∩Φ+) ⊂ Φ+}.
The following lemma is easy to check from the definitions.

Lemma 5.2. For any σ ∈W (ϕ : Φ+),

ε(σϕ : Φ+) = detσε(ϕ : Φ+).

Further, for any s ∈W (Φ),

ε(sϕ : sΦ+) = ε(ϕ : Φ+).

Theorem 5.3. Suppose that Φ is irreducible and let Φ+ be any choice of positive
roots for Φ. Then ∑

ϕ∈T (Φ)

ε(ϕ : Φ+) =

{
(−1)n if Φ is of type A2n;
1 otherwise.



DISCRETE SERIES CHARACTERS 2577

Proof. Suppose that Φ+
1 and Φ+

2 are two choices of positive roots. Then there is
w ∈ W (Φ) such that Φ+

2 = wΦ+
1 , and using Lemma 5.2,∑

ϕ∈T (Φ)

ε(ϕ : Φ+
2 ) =

∑
ϕ∈T (Φ)

ε(ϕ : wΦ+
1 ) =

∑
ϕ∈T (Φ)

ε(w−1ϕ : Φ+
1 ) =

∑
ϕ∈T (Φ)

ε(ϕ : Φ+
1 )

since w permutes the elements of T (Φ). Thus it is enough to prove the result for
one choice of positive roots.

We will prove the result by induction on the rank of Φ. It is obvious when Φ has
rank 0 or 1. Assume that the rank of Φ is greater than one, and that the theorem
is true for root systems of rank less than that of Φ.

Fix ϕ0 ∈ T (Φ) and pick a basis B of long roots of ϕ0. Pick an ordering B =
{α1, ..., αn} so that if two roots of B are in the same irreducible factor of type B2

of ϕ0, then they are adjacent in the ordering. Let Φ+ = Φ+(B).
Define Φ1 = {β ∈ Φ : 〈β, αi〉 = 0, 1 ≤ i ≤ n − 1},Φ+

1 = Φ1 ∩ Φ+. Then
αn ∈ Φ+

1 so that Φ+
1 6= ∅. Let α be a simple root for Φ+

1 . Then because Φ+ is the
lexicographic ordering with respect to α1, ..., αn, it is easy to see that α is also a
simple root for Φ+.

If Φ is spanned by strongly orthogonal roots, then α1, ..., αn is an orthogonal
basis for the vector space spanned by Φ, so we must have Φ+

1 = {αn} and α = αn.
Suppose Φ is not spanned by strongly orthogonal roots. Then Φ is of type A2n, n ≥
1, A2n−1, n ≥ 2, D2n+1, n ≥ 1, or E6, in which case n = 4. For any β ∈ Φ, let Φβ
denote the set of roots in Φ orthogonal to β. If Φ is of type A2n, A2n−1, D2n+1, or
E6, and β ∈ Φ, then Φβ is of type A2n−2, A2n−3, D2n−1 × A1, or A5 respectively.
Using this we can see that Φ1 is of type A1 except when Φ is of type A2n, in which
case it is of type A2. Thus α = αn except when Φ is of type A2n. In this case αn
is the unique nonsimple root in Φ+

1 .
Suppose that ϕ ∈ T (Φ) and α 6∈ ϕ. Then since α is simple for Φ+, sα(ϕ∩Φ+) ⊂

Φ+ so that by Lemma 5.2,

ε(sαϕ : Φ+) = −ε(ϕ : Φ+).

Thus such two-structures appear in pairs which cancel in the sum, and so∑
ϕ∈T (Φ)

ε(ϕ : Φ+) =
∑

ϕ∈T (Φ,α)

ε(ϕ : Φ+)

where T (Φ, α) = {ϕ ∈ T (Φ) : α ∈ ϕ}.
Let ϕ ∈ T (Φ, α) and suppose that ϕα = ϕ ∩ Φα 6∈ T (Φα). (Here as above, Φα

denotes the roots in Φ orthogonal to α.) Using the techniques of Lemmas 4.8 and
4.9 of [5] we see that such two-structures appear in pairs which cancel in the sum.
Thus in any case we have∑

ϕ∈T (Φ)

ε(ϕ : Φ+) =
∑

ϕ∈T (Φ,α)′

ε(ϕ : Φ+)

where T (Φ, α)′ = {ϕ ∈ T (Φ, α) : ϕα ∈ T (Φα)}.
Suppose that Φ is spanned by strongly orthogonal roots. Then it is proven in

Lemmas 3.3 and 4.10 of [5] that ϕ 7→ ϕα gives a bijection between T (Φ, α)′ and
T (Φα), and that

ε(ϕ : Φ+) = ε(ϕα : Φ+
α )
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for all ϕ ∈ T (Φ, α)′, where Φ+
α = Φ+ ∩ Φα. Thus the theorem follows from our

induction hypothesis applied to the root system Φα since Φα is spanned by strongly
orthogonal roots and hence contains no irreducible factors of type A2n.

Thus we may as well assume that all roots of Φ are of the same length so that
every ϕ ∈ T (Φ) is of type An1 . In this case, when α ∈ ϕ we have ϕ = ϕα ∪ {±α}.
Clearly ϕα is always in T (Φα) in this case, and any ψα ∈ T (Φα) can be expanded
by adding ±α to become an element of T (Φ). Thus the mapping ϕ 7→ ϕα gives a
bijection between T (Φ, α) and T (Φα).

Let ϕ0 be the two-structure used above to define Φ+. Then by definition
ε(ϕ0 : Φ+) = 1. If Φ is not of type A2n, then α = αn so that ϕ0 ∈ T (Φ, α).
Write ϕ1 = ϕ0 in this case. Now suppose that Φ is of type A2n. Recall Φ1 is of
type A2 and that α is a simple root for Φ+

1 while αn is the unique nonsimple root
in Φ+

1 . Let α′ denote the other simple root in Φ+
1 , and define ϕ1 = sα′ϕ0. Then

sα′αi = αi, 1 ≤ i ≤ n − 1, while sα′αn = α. Thus ϕ1 ∈ T (Φ, α) and sα′ϕ
+
0 = ϕ+

1

so that ε(ϕ1 : Φ+) = −1.
In either case, we let ψ1 = (ϕ1)α. Then ε(ψ1 : Φ+

α ) = 1 since Φ+
α is the lexico-

graphic ordering with respect to the basis {α1, ..., αn−1} of ψ1. Now let ϕ ∈ T (Φ, α).
Since ϕα ∈ T (Φα), there is σ ∈ W (Φα) such that (ϕα ∩ Φ+) = σ(ψ1 ∩ Φ+). Now
(ϕ1 ∩Φ+) = (ψ1 ∩Φ+)∪{α} and σα = α, so that σ(ϕ1 ∩Φ+) = (ϕα ∩Φ+)∪{α} =
ϕ ∩ Φ+. Thus

ε(ϕ : Φ+) = detσε(ϕ1 : Φ+) and ε(ϕα : Φ+
α ) = detσε(ψ1 : Φ+

α ).

Now if Φ is not of type A2n, then ε(ϕ1 : Φ+) = ε(ψ1 : Φ+
α ) = 1 so that ε(ϕ : Φ+) =

ε(ϕα : Φ+
α ) for all ϕ ∈ T (Φ, α). If Φ is of type A2n, then

ε(ϕ1 : Φ+) = −1 = −ε(ψ1 : Φ+
α )

so that ε(ϕ : Φ+) = −ε(ϕα : Φ+
α ) for all ϕ ∈ T (Φ, α). The theorem now follows

from our induction hypothesis applied to the root system Φα since Φα contains no
irreducible factors of type A2n unless Φ is of type A2n, while in this case Φα is of
type A2(n−1).

Remark 5.1. A different definition of the signs ε(ϕ : Φ+) was given in [4]. This
definition satisfies Lemma 5.2, but

∑
ϕ∈T (Φ) ε(ϕ : Φ+) = 1 for every root system

Φ. Thus the two definitions agree unless Φ contains an irreducible factor of type
A2k, k ≡ 1 (mod 2), in which case they give opposite signs.

Let Φ+ be any choice of positive roots for Φ, and for ϕ ∈ T (Φ), let ϕ+ = ϕ∩Φ+.
Then we define

ρ(Φ+) =
1
2

∑
α∈Φ+

α, ρ(ϕ+) =
1
2

∑
α∈ϕ+

α, ρ(Φ+, ϕ) = ρ(Φ+)− ρ(ϕ+).

Let B be a basis of long roots for ϕ, and let B = {α1, ..., αn} be an ordering so
that if two roots of B are in the same irreducible factor of type B2 of ϕ, then they
are adjacent in the ordering. Let Φ+ = Φ+(B), ϕ+ = ϕ ∩ Φ+.

Lemma 5.4. Assume that Φ is irreducible and let ϕ ∈ T (Φ). Then

[Φ+\ϕ+] ≡
{

2k (mod 4) if Φ is of type A2k;
0 (mod 4) otherwise.
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Further, if Φ is not of type A2k or Cn, n odd, then

ρ(Φ+, ϕ) =
n∑
i=1

niαi

where ni ∈ Z, 1 ≤ i ≤ n. Suppose that Φ is of type C2k+1, k ≥ 0. Then ϕ has a
unique irreducible factor of type A1. If the root from this irreducible factor is first
in the ordering, then again we have

ρ(Φ+, ϕ) =
n∑
i=1

niαi

where ni ∈ Z, 1 ≤ i ≤ n = 2k + 1. If this root is last in the ordering, then

ρ(Φ+, ϕ) =
1
2

(
2k∑
i=1

αi) +
n∑
i=1

niαi

where ni ∈ Z, 1 ≤ i ≤ n = 2k + 1.

Proof. Suppose first that Φ is of type A2k, k ≥ 1. Then [Φ+] = k(2k + 1) and ϕ is
of type Ak1 so that [ϕ+] = k. Thus [Φ+\ϕ+] = 2k2 ≡ 2k (mod 4).

Suppose that Φ is of type G2. Then ϕ = {±α1,±α2} where α1 is long, α2 is
short, and 〈α1, α2〉 = 0. Now

Φ\ϕ = {±1
2
α1 ±

1
2
α2, ±

1
2
α1 ±

3
2
α2}.

Thus [Φ+\ϕ+] = 4, and if B = {α1, α2}, then ρ(Φ+) − ρ(ϕ+) = α1, while if
B = {α2, α1}, then ρ(Φ+)− ρ(ϕ+) = 2α2.

Now assume that Φ is not of type A2k or G2. For any γ ∈ Φ, define

ci(γ) = 〈αi, γ〉/〈αi, αi〉, 1 ≤ i ≤ n.

Since Φ is not of type G2 we have ci ∈ {0,±1/2,±1}, 1≤ i ≤ n.
Fix γ ∈ Φ+. Since no root of Φ is orthogonal to every element of B, there is at

least one i, 1 ≤ i ≤ n, such that ci(γ) 6= 0. Suppose that there is only one such
index. That is, there is 1 ≤ r ≤ n such that cr(γ) 6= 0, ci(γ) = 0, i 6= r. Then
as in the proof of Theorem 5.3, since Φ is not of type A2n, the set of roots in Φ
orthogonal to (n− 1) orthogonal roots must be of type A1. Thus γ = αr ∈ ϕ+.

Fix γ ∈ Φ+\ϕ+. Then by the above, there are at least two indices i, 1 ≤ i ≤ n,
such that ci = ci(γ) 6= 0. Let r < s be the two smallest such indices. Then we can
write

γ = crαr + csαs + γ′

where cr > 0, cs 6= 0, and γ′ is in the real vector space spanned by Φ, is orthogonal
to αi, 1 ≤ i ≤ s, but is not necessarily a root. Since cr > 0, we must have
cr ∈ {1/2, 1}. Now define

γ1 = γ = crαr + csαs + γ′, γ2 = −sαrγ = crαr − csαs − γ′,

γ3 = sαsγ = crαr − csαs + γ′, γ4 = −sαssαrγ = crαr + csαs − γ′.

Since αr, αs ∈ ϕ and γ 6∈ ϕ, we have γi 6∈ ϕ, 1 ≤ i ≤ 4. Thus γi ∈ Φ+\ϕ+ for all
1 ≤ i ≤ 4.
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Suppose that γ′ 6= 0. Then the roots γi, 1 ≤ i ≤ 4 are distinct. Further,

1
2

4∑
i=1

γi = 2crαr, 2cr ∈ {1, 2},

and so is an integral multiple of αr. Thus roots of this type in Φ+\ϕ+ can be
grouped into subsets of four roots so that the half sum of each group is an integral
multiple of αi for some 1 ≤ i ≤ n.

Now assume that γ′ = 0. Then γ = crαr + csαs is in the linear span of the
orthogonal roots αr, αs. This cannot happen if all roots of Φ are of the same
length. Thus the lemma is proven in the equal length case.

Now assume that Φ is of type Bn, Cn, or F4, and γ ∈ Φ+\ϕ+ such that γ =
crαr + csαs. Now since αr, αs are strongly orthogonal, we see that γ can only be
a root if αr, αs are both long, γ is short, and cr = 1/2, cs = ±1/2. But if Φ is of
type Bn, all short roots are elements of ϕ. Thus we may as well assume that Φ is
of type Cn or F4.

Assume that Φ is of type Cn, n ≥ 1, or Fn, n = 4. Then the short roots of Φ+

are all roots of the form 1
2 (αi ±αj), 1 ≤ i < j ≤ n. Let k be the greatest integer in

n/2. Then there are 2k short roots in ϕ+. Thus if n is even, there are 4k(k − 1)
short roots in Φ+\ϕ+, while if n is odd, there are 4k2 short roots in Φ+\ϕ+.

Suppose that n is even, or n is odd and the root from the irreducible factor of
type A1 of ϕ is last in the ordering. Then γ ∈ ϕ+ just in case γ = 1

2 (α2i−1 ± α2i)
for some 1 ≤ i ≤ k. Thus the half sum of short roots in Φ+\ϕ+ is

1
2

∑
1≤j≤n

(n− j)αj −
1
2

∑
1≤i≤k

α2i−1 =
∑

1≤i≤k
(n− 2i)(

1
2

)(α2i−1 + α2i).

If n = 2k is even, then 1
2 (n− 2i) = k− i ∈ Z, 1 ≤ i ≤ k, while if n = 2k+ 1 is odd,

then 1
2 (n− 2i) = k − i+ 1/2.

Now suppose that n is odd and the root from the irreducible factor of type A1

of ϕ0 is first in the ordering. Then γ ∈ ϕ+ just in case γ = 1
2 (αn−2i−1 ± αn−2i) for

some 0 ≤ i ≤ k − 1, where k is the greatest integer in n/2. Thus the half sum of
short roots in Φ+\ϕ+ is

1
2

∑
1≤j≤n

(n− j)αj −
1
2

∑
0≤i≤k−1

αn−2i−1 =
∑

0≤j≤k−1

jαn−2j−1 +
∑

1≤j≤k
jαn−2j .

Write r(Φ) = ([Φ]− [ϕ])/4 where ϕ ∈ T (Φ). Then r(Φ) is independent of ϕ since
all ϕ ∈ T (Φ) are conjugate via W (Φ), and is an integer by Lemma 5.4.

Theorem 5.5. Let Φ+ be any choice of positive roots for Φ. Then∑
ϕ∈T (Φ)

ε(ϕ : Φ+) = (−1)r(Φ).

Let ϕ ∈ T (Φ), ϕ+ = ϕ ∩ Φ+.
(i) Suppose that Φ is of type A2n, n ≥ 1. Then ρ(Φ+)−ρ(ϕ+) is not in the weight

lattice of Φ.
(ii) Suppose that Φ contains no irreducible factors of type A2n, n ≥ 1. Then ρ(ϕ+)

is in the weight lattice of Φ and ρ(Φ+)− ρ(ϕ+) is in the root lattice of Φ.
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Proof. The first result follows directly from combining Theorem 5.3 and Lemma
5.4, and (i) is easy to check. It remains to prove (ii). Since ρ(Φ+) is in the weight
lattice of Φ, the first statement will follow from the second. But by Lemma 5.4
there is a choice Φ+

1 of positive roots for Φ so that ρ(Φ+
1 ) − ρ(ϕ ∩ Φ+

1 ) is in the
root lattice of ϕ, hence in the root lattice of Φ. But ρ(Φ+) − ρ(ϕ+) differs from
ρ(Φ+

1 )− ρ(ϕ ∩Φ+
1 ) by elements of the root lattice of Φ.

Define rank T (Φ) to be the common rank of every ϕ ∈ T (Φ). Let Taug(Φ) denote
the set of all root subsystems ϕ ⊂ Φ such that every irreducible factor of ϕ is of
type A1 or B2 and rank ϕ = rank T (Φ). Thus T (Φ) ⊂ Taug(Φ).

Lemma 5.6. Let ϕ ∈ Taug(Φ). Then there is at least one ϕ0 ∈ T (Φ) such that
ϕ ⊂ ϕ0. Moreover, when Φ is irreducible, ϕ0 is unique unless:

(i) Φ is of type Bn and ϕ contains at least 3 irreducible factors of type A1 gen-
erated by short roots;

(ii) Φ is of type Cn and ϕ contains at least 3 irreducible factors of type A1 gen-
erated by long roots;

(iii) Φ is of type F4 and ϕ contains 4 irreducible factors of type A1 generated by
roots of the same length.

Finally, if ϕ 6∈ T (Φ) then there are two irreducible factors of ϕ of type A1 which
generate a root system of type B2 in Φ.

Proof. We may as well assume that Φ is irreducible. If Φ contains no root systems
of type B2, then augmented two-structures ϕ of Φ must be of type An1 where n =
rank T (Φ). But all such ϕ are two-structures. Thus in this case Taug(Φ) = T (Φ)
and the lemma is trivial. If Φ contains root systems of type B2, then Φ is of type
Bn, Cn, or F4. In these cases it is easy to check the lemma using the following facts.
If Φ is of type Bn, then any long root of Φ is contained in a unique irreducible factor
of Φ of type B2, while any pair of orthogonal short roots span an irreducible factor
of type B2. If Φ is of type Cn, then any short root of Φ is contained in a unique
irreducible factor of Φ of type B2, while any pair of orthogonal long roots span an
irreducible factor of type B2. Finally, when Φ is of type F4, any two orthogonal
roots of the same length determined an irreducible factor of type B2.

The following lemma is elementary.

Lemma 5.7. (i) Let ϕ be a root subsystem of Φ such that every irreducible factor
is of type A1 or B2. Then ϕ ∈ Taug(Φ) if and only if no root of Φ is orthogonal
to every root in ϕ.

(ii) Let S be any set of orthogonal roots in Φ. Then there is ϕ ∈ T (Φ) such that
S ⊂ ϕ.

6. Lifting of Discrete Series

In this section we will define lifting from the two-structure groups Gϕ to G and
restate Theorem 1.2 more precisely as Theorem 6.4. We then prove Theorem 6.4,
modulo the proof of Lemma 6.8, which is deferred to the next section.

As in §1, for S ∈ SO(Φ, ϕ), h ∈ Hϕ,S , such that fS(h) ∈ G′, we define

DG
ϕ (h) = |DG(fS(h))|− 1

2 |Dϕ(h)| 12 .
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Let Oϕ be a good orbit in G′ϕ such that Fϕ(Oϕ) is a regular semisimple orbit in G.
Then there are S ∈ SO(Φ, ϕ), h ∈ Hϕ,S, such that h ∈ Oϕ. Now for any γ ∈ Oϕ
we can define

DG
ϕ (γ) = DG

ϕ (h).

It is easy to see that this is independent of the choice of S and h.
As in §4, for g ∈ G′, we let Xϕ(g) denote a complete set of representatives for

the good Gϕ orbits which map to OG(g) under the orbit correspondence Fϕ. It is
possible that Xϕ(g) = ∅.

Let Θ be a class function defined on G′ϕ. Now for g ∈ G′, we define

(LiftGϕΘ)(g) =
∑

h′∈Xϕ(g)

DG
ϕ (h′)Θ(h′).(6.1)

In the case that Xϕ(g) = ∅, we have (LiftGϕΘ)(g) = 0. The definition does not
depend on the choice of Xϕ(g). If g, g′ ∈ G′ with OG(g) = OG(g′) we can take
Xϕ(g) = Xϕ(g′). Thus LiftGϕΘ is a class function on G′.

Lemma 6.1. (i) Suppose that Φ contains no irreducible factors of type A2k, k ≥
1. Let λ ∈ ib∗ be a discrete series parameter for G. Then λ is also a discrete
series parameter for Gϕ for every ϕ ∈ T (Φ). Further, if λ is a limit of discrete
series parameter for G, then it is either a discrete series or limit of discrete
series parameter for Gϕ, ϕ ∈ T (Φ).

(ii) Suppose that Φ is irreducible of type A2k, k ≥ 1. Then there is ϕ ∈ T (Φ) such
that no discrete series parameter or limit of discrete series parameter for G
is a discrete series or limit of discrete series parameter for Gϕ.

Proof. (i) follows easily from Theorem 5.5.
(ii) Using the classification in [9] for example, we see that ΦK is of type Ap−1 ×

Aq−1 for some p and q with p + q = 2k + 1. Suppose that λ is a discrete series or
limit of discrete series parameter for G. Then λ − ρG ∈ LB. It is easy to check
that when Φ is of type A2k, ρG is in the root lattice of Φ, and hence is an element
of LB. Thus λ ∈ LB. Now λ − ρϕ ∈ LBϕ = LB if and only if ρϕ ∈ LB. Thus it
suffices to find ϕ ∈ T (Φ) such that ρϕ 6∈ LB.

Now ΦK = ∅ only if p ≤ 1 and q ≤ 1. But p+ q ≥ 3, so this cannot occur. Thus
ΦK 6= ∅. Fix α ∈ ΦK , ϕ ∈ T (Φ). Since by Theorem 5.5(ii) ρϕ is not a weight of Φ,
there is β ∈ Φ such that 2〈ρϕ, β〉/〈β, β〉 6∈ Z. Now since Φ is irreducible, there is
w ∈ W (Φ) such that α = wβ. Now wϕ ∈ T (Φ) and ρwϕ is not a weight for ΦK ,
and so ρwϕ 6∈ LB.

Fix a discrete series or limit of discrete series parameter λ for G and fix E∗ =
E∗(λ) as in §3 so that λ is in the closure of E∗. As in §3 we have the discrete
series or limit of discrete series character Θλ corresponding to λ and E∗. For any
ϕ ∈ T (Φ), E∗ is contained in a unique connected component E∗ϕ of

E′(ϕ) = {τ ∈ E : 〈τ, α〉 6= 0 ∀ α ∈ ϕ}.
Suppose first that Φ contains no irreducible factors of type A2k. Since λ is a

discrete series or limit of discrete series parameter for Gϕ and λ is in the closure of
E∗ϕ, λ and E∗ also determine a discrete series or limit of discrete series character
Θϕ
λ for Gϕ.
Now suppose that Φ contains irreducible factors of type A2k, k ≥ 1. Let ω denote

the set of all X ∈ g such that |Imλ| < π for every eigenvalue λ of adX . Define
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Ω = exp(ω) ⊂ G. Then ω is an invariant neighborhood of the identity in g and Ω
is an invariant neighborhood of the identity in G. Let Ω′ = Ω ∩ G′. Now for any
ϕ ∈ T (Φ), we let Ω′ϕ denote the union of all good regular Gϕ-orbits which map into
Ω′ via the orbit map Fϕ. If Θ is any class function on Ω′ϕ, we can define a class
function on Ω′ as in (6.1) by

(LiftGϕΘ)(g) =
∑

x∈Xϕ(g)

DG
ϕ (x)Θ(x), g ∈ Ω′.

Note that by definition, for any g ∈ Ω′, Xϕ(g) ⊂ Ω′ϕ.
We will define a class function Θϕ

λ on Ω′ϕ. The only obstruction to defining Θϕ
λ

on G′ϕ is that ξλ−ρϕ is not well-defined in the case that eρ(Φ
+,ϕ) is not well-defined

on B. Let EΦ denote the subspace of E = ib∗ spanned by Φ.

Lemma 6.2. Let S ∈ SO(Φ), and h ∈ HS ∩ Ω′. Then there is H ∈ hS ∩ ω such
that h = expH. For all τ ∈ EΦ,

h 7→ ξτ (h) = eτ(c−1
S H)

gives a well defined function on HS ∩ Ω′. Finally, if (w, S′) ∈ Λ(h), then

ξτ ((w, S′) · h) = ξw−1τ (h).

Proof. Since h ∈ Ω there is H ∈ ω such that h = expH . Then H ∈ Cg(h) = hS ,
so that H ∈ hS ∩ ω. Now suppose that H,H ′ ∈ hS ∩ ω such that h = expH =
expH ′. For any α ∈ Φ, α(c−1

S H − c−1
S H ′) ∈ 2πiZ. But |Im α(c−1

S H − c−1
S H ′)| ≤

|Im cSα(H)| + |Im cSα(H ′)| < 2π because H,H ′ ∈ ω. Thus α(c−1
S H − c−1

S H ′) =
0 for all α ∈ Φ so that τ(c−1

S H) = τ(c−1
S H ′) for all τ ∈ EΦ. Finally, if h =

expH,H ∈ hS ∩ ω, then for (w, S′) ∈ Λ(h), (w, S′) · h = exp cS′wc−1
S H where

cS′wc
−1
S H ∈ hS′ ∩ ω. Thus by definition,

ξτ ((w, S′) · h) = eτ(wc−1
S H) = ew

−1τ(c−1
S H) = ξw−1τ (h).

Let S ∈ SO(Φ, ϕ), h′ ∈ Hϕ,S ∩ Ω′ϕ, and let h = fS(h) ∈ HS ∩ Ω′. Let Φ+ be a
choice of positive roots for Φ. Then ρ(Φ+, ϕ) ∈ EΦ, so using Lemma 6.2 we can
define

ξρ(Φ+,ϕ)(h′) = ξρ(Φ+,ϕ)(h), ξλ−ρϕ (h′) = ξλ−ρϕ (h) = ξλ−ρ(h) ξρ(Φ+,ϕ)(h).

Now we can define Θϕ
λ on Ω′ϕ using the formula in Theorem 3.3 applied to the

group Gϕ with the discrete series constants corresponding to E∗ϕ. (See Lemma 6.5
for details.) It corresponds to a discrete series character on a two-fold cover of Gϕ.

In the case that Φ contains no irreducible factors of type A2n, n ≥ 1, we define
Ω = G,Ω′ = G′, and Ω′ϕ = G′ϕ. This will allow us to handle the two cases
simultaneously from now on.

Let Φ+ be a choice of positive roots for Φ and let ϕ+ = ϕ ∩ Φ+. Recall that

qG =
1
2

dim(G/K), εG(Φ+ : E∗) = εG(E∗) = sign
∏
α∈Φ+

〈α, τ〉, τ ∈ E∗,

and let

qϕ =
1
2

dim(Gϕ/Kϕ), εϕ(ϕ+ : E∗) = εϕ(E∗) = sign
∏
α∈ϕ+

〈α, τ〉, τ ∈ E∗.
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Define

εGϕ (E∗) = εGϕ (Φ+ : E∗) = ε(ϕ : Φ+)(−1)qG(−1)qϕεϕ(ϕ+ : E∗)εG(Φ+ : E∗).(6.2)

Lemma 6.3. εGϕ (E∗) is independent of the choice Φ+ of positive roots.

Proof. Fix one choice Φ+ of positive roots and write ϕ+ = ϕ ∩ Φ+ as above.
Let w ∈ W (Φ) so that wΦ+ is another choice of positive roots. Then there is
a unique u ∈ W (ϕ) so that wΦ+ ∩ ϕ = uϕ+. Further, w−1uϕ+ ⊂ Φ+ so that
w−1u ∈ W (ϕ : Φ+). Thus there is v ∈ W (ϕ : Φ+) so that w = uv−1. Now by
Lemma 5.2,

ε(ϕ : wΦ+) = ε(vu−1ϕ : Φ+) = ε(vϕ : Φ+) = det v ε(ϕ : Φ+).

But

εG(wΦ+ : E∗) = detw εG(Φ+ : E∗)

and

εϕ(uϕ+ : E∗) = det u εϕ(ϕ+ : E∗).

For S ∈ SO(Φ), h = ta ∈ H1
S , define

c(h) = c(Φt)c(K,h).(6.3)

Here c(K,h) = [W0(h)/W (ΦK,t))] is the constant appearing in the discrete series
character formula of Theorem 3.3, and c(Φt) is the constant occurring in Theorem
3.4. Note that c(h) depends only on the connected component of h in H1

S . Further,
if S, S′ ∈ SO(Φ), h = ta ∈ H1

S ∩G′, h′ = t′a′ ∈ HS′ ∩G′ such that OG(h) = OG(h′),
then Φt and Φt′ are conjugate via W (ΦK), so that c(h) = c(h′). Thus if g ∈ G′
and S ∈ SO(Φ), h ∈ H1

S , such that OG(g) = OG(h), we can define c(g) = c(h), and
this is independent of the choice of S and h.

Recall that in §4, for any S ∈ SO(Φ) we definedH ′′S to be the set of all h ∈ H1
S∩G′

such that if (w, S) ∈ Λ(h) and (w, S) · h = h, then w = 1. Let G′′ be the set of all
g ∈ G such that there are S ∈ SO(Φ), h ∈ H ′′S , such that OG(g) = OG(h). Using
Theorem 2.5 and Lemma 2.6 it is easy to see that this definition is also independent
of the choice of S and h.

Theorem 6.4. Let λ be any discrete series or limit of discrete series parameter
for G. Then for all g ∈ Ω ∩G′′,

Θλ(g) = c(g)
∑

ϕ∈T (Φ)

εGϕ (E∗) (LiftGϕΘϕ
λ)(g).

The remainder of this section is devoted to the proof of Theorem 6.4. We will
reduce the proof to a technical result, Lemma 6.8, which will be proven in §7.

Fix a set of positive roots Φ+ and let ϕ+ = Φ+ ∩ ϕ,ϕ ∈ T (Φ). Define

ρG = ρ(Φ+) =
1
2

∑
α∈Φ+

α, ρϕ = ρ(ϕ+) =
1
2

∑
α∈ϕ+

α, ρ(Φ+, ϕ) = ρ(Φ+)− ρ(ϕ+).

Now let S ∈ SO(Φ) with corresponding Cayley transform cS . When Φ contains
no irreducible factors of type A2n, n ≥ 1, ρ(Φ+, ϕ) is in the root lattice of Φ by
Theorem 5.5. Thus for h = ta ∈ H1

S , as in §3 we can define

ξρ(Φ+,ϕ)(h) = eρ(Φ
+,ϕ)(t) exp(ρ(Φ+, ϕ)(c−1

S log a)).
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Otherwise, we define ξρ(Φ+,ϕ)(h), h ∈ H1
S ∩ Ω′, using Lemma 6.2. Now for h ∈

H1
S ∩ Ω′, we can define

∆G
ϕ (Φ+ : h) =

∏
α∈cS(Φ+\ϕ+)

(1 − e−α(h))ξ−ρ(Φ+,ϕ)(h).(6.4)

We also define

δ(Φ+, ϕ, h) = |∆G
ϕ (Φ+ : h)|∆G

ϕ (Φ+ : h)−1.(6.5)

Suppose that S ∈ SO(Φ, ϕ). As in §3, define

∆′G(Φ+ : h) = ∆′G(h) =
∏

α∈cSΦ+

(1− e−α(h)), h ∈ HS ;

∆′ϕ(ϕ+ : h′) = ∆′ϕ(h′) =
∏

α∈cSϕ+

(1− e−α(h′)), h′ ∈ Hϕ,S .

Then for h′ ∈ Hϕ,S such that fS(h′) = h ∈ Ω′, we have

∆G
ϕ (Φ+ : h) = ∆′G(Φ+ : h)−1∆′ϕ(ϕ+ : h′)ξ−ρ(Φ+,ϕ)(h),

and it is easy to see that

DG
ϕ (h′) = |∆G

ϕ (Φ+ : h)| = δ(Φ+, ϕ, h)∆G
ϕ (Φ+ : h).(6.6)

Fix a choice Φ+ of positive roots, and for ϕ ∈ T (Φ), let ϕ+ = Φ+ ∩ ϕ. We use
these choices of positive roots to define ∆′G,∆

′
ϕ, ρG, ρϕ, εG(E∗), and εϕ(E∗) for all

ϕ ∈ T (Φ).
Fix ϕ ∈ T (Φ), S ∈ SO(Φ, ϕ). We use the notation of §3 for Gϕ. Then Θϕ

λ is
given on Hϕ,S ∩Ω′ϕ by the following formula.

Lemma 6.5. Let h′ = t′a′ ∈ Hϕ,S ∩ Ω′ϕ. Then

(−1)qϕ εϕ(E∗) Θϕ
λ(h′)

=
∑

w∈W (ϕK ,h′)

∆′ϕ(w · h′)−1ξλ−ρϕ (w · h′)c(1 : E∗ϕ : ϕ+
R(w · h′)).

Proof. In the case that λ is a discrete series or limit of discrete series parameter
for Gϕ, this follows directly from Theorem 3.3 since by Lemma 4.3(ii), W (ϕK) ∩
W (ϕt′) = W (ϕK,t′), so that the constant c(Kϕ, h

′) = 1. Otherwise, this formula
can be taken as the definition of Θϕ

λ .

For h ∈ H1
S ∩ Ω′ with f−1

S (h) = h′ ∈ Hϕ,S, write W (ϕK , h) = W (ϕK , h′). We
also write ϕ+

R(h) = ϕ+
R(h′) and c(1 : E∗ : ϕ+

R(h)) = c(1 : E∗ϕ : ϕ+
R(h′)). For

w ∈ W (ΦK , ϕ, h), we will write

δ(Φ+, ϕ, w · h) = δ(Φ+, ϕ, (w, S′) · h)

where S′ ∈ SO(Φ, ϕ) such that (w, S′) ∈ Λ(h). It is easy to see that it is indepen-
dent of the choice of S′.

Lemma 6.6. Let h ∈ H1
S ∩ Ω′, S ∈ SO(Φ, ϕ). Then

εGϕ (E∗) DG
ϕ (f−1

S (h)) Θϕ
λ(f−1

S (h)) = ε(ϕ : Φ+)εG(E∗) (−1)qG

×
∑

w∈W (ϕK,h)

∆′G(w · h)−1 ξλ−ρG (w · h) δ(Φ+, ϕ, w · h)c(1 : E∗ : ϕ+
R(w · h)).
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Proof. Let f−1
S (h) = h′ = t′a′ ∈ Hϕ,S. Then DG

ϕ (h′) = DG
ϕ (w · h′) for all w ∈

W (ϕK , h′). Thus using (6.6), Lemma 6.5, and the definition of εGϕ (E∗),

εGϕ (E∗) DG
ϕ (h′) Θϕ

λ(h′) = ε(ϕ : Φ+)εG(E∗) (−1)qG

×
∑

w∈W (ϕK,h′)

DG
ϕ (w · h′)∆′ϕ(w · h′)−1ξλ−ρϕ(w · h′)c(1 : E∗ : ϕ+

R(w · h′))

= ε(ϕ : Φ+)εG(E∗) (−1)qG

×
∑

w∈W (ϕK,h′)

∆′G(w · h)−1ξλ−ρG (w · h′)δ(Φ+, ϕ, w · h)c(1 : E∗ : ϕ+
R(w · h′)).

But

ξλ−ρG(w · h′) = ξλ−ρG (w · h).

Lemma 6.7. Let ϕ ∈ T (Φ), S ∈ SO(Φ), h ∈ H ′′S ∩ Ω. Then

εGϕ (E∗) (LiftGϕΘϕ
λ)(h)

= εG(E∗) (−1)qG
∑

w∈W (ΦK ,ϕ,h)

ε(ϕ : Φ+)δ(Φ+, ϕ, w · h)

×∆′G(w · h)−1 ξλ−ρG(w · h) c(1 : E∗ : ϕ+
R(w · h)).

Proof. By Theorem 4.13, we can take

Xϕ(h) = {f−1
Si

((wi, Si) · h) : 1 ≤ i ≤ p}

where the wi = [vi, si], 1 ≤ i ≤ p, are a complete set of representatives of the
equivalence classes in W (ΦK , ϕ, h) for the equivalence relation ∼ϕ,h, and Si ∈
SO(Φ, ϕ), 1 ≤ i ≤ p. Write

h′i = f−1
Si

((wi, Si) · h), hi = (wi, Si) · h, 1 ≤ i ≤ p.
Then we have

εGϕ (E∗) (LiftGϕΘϕ
λ)(h) = εGϕ (E∗)

∑
1≤i≤p

DG
ϕ (h′i) Θϕ

λ(h′i).

Fix 1 ≤ i ≤ p. Then using Lemma 6.6,

εGϕ (E∗) DG
ϕ (h′i) Θϕ

λ(h′i) = ε(ϕ : Φ+) εG(E∗) (−1)qG

×
∑

w∈W (ϕK,hi)

∆′G(w · hi)−1 ξλ−ρG (w · hi) δ(Φ+, ϕ, w · hi) c(1 : E∗ : ϕ+
R(w · hi)).

Let w ∈ W (ϕK , hi). Then there are v ∈W (ϕK), u ∈W (ϕvit) such that w = vu,
and vSi ∈ SO(Φ, ϕ). Then (w, vSi) ∈ Λ(ϕ, h′i) ⊂ Λ(hi) and (w, vSi) ·hi = (w, vSi) ·
(wi, Si) ·h = (wwi, vSi) ·h where wwi ∈W (ΦK , ϕ, h) by Lemma 4.11. Thus we can
write

εGϕ (E∗) DG
ϕ (h′i) Θϕ

λ(h′i)

= εG(E∗) (−1)qG
∑

w∈W (ϕK,hi)

δ(Φ+, ϕ, wwi · h)ε(ϕ : Φ+)

×∆′G(wwi · h)−1 ξλ−ρG (wwi · h) c(1 : E∗ : ϕ+
R(wwi · h)).
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By Lemma 4.12 (ii), for each σ ∈ W (ΦK , ϕ, h) there are unique 1 ≤ i ≤ p and
w ∈ W (ϕK , hi) such that σ = wwi. Thus

εGϕ (E∗) (LiftGϕΘϕ
λ)(h)

= εG(E∗) (−1)qG
∑

w∈W (ΦK ,ϕ,h)

δ(Φ+, ϕ, w · h)ε(ϕ : Φ+)

×∆′G(w · h)−1 ξλ−ρG(w · h) c(1 : E∗ : ϕ+
R(w · h)).

We will prove the following technical lemma in §7. Define Taug(Φt) as in §5. For
ψ ∈ Taug(Φt), let

T (Φ, ψ) = {ϕ ∈ T (Φ) : ϕ ∩ Φt = ψ}.

Lemma 6.8. Let S ∈ SO(Φ), h = ta ∈ H1
S ∩ Ω′. Let Φ+ be any choice of positive

roots for Φ and let ψ ∈ Taug(Φt). Then∑
ϕ∈T (Φ,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =

{
ε(ψ : Φ+

R(h)), if ψ ∈ T (Φt);
0, otherwise.

Assuming Lemma 6.8, we can complete the proof of Theorem 6.4 as follows.

Proof of Theorem 6.4. Since both sides of the equation are class functions on G′′ ∩
Ω, it suffices to prove the equation for every h ∈ H ′′S ∩ Ω, S ∈ SO(Φ).

Fix h ∈ H ′′S ∩ Ω, S ∈ SO(Φ). Recall that c(h) = c(Φt)c(K,h). Thus by Lemma
6.7 we have

c(h)
∑

ϕ∈T (Φ)

εGϕ (E∗) (LiftGϕΘϕ
λ)(h)

= εG(E∗) (−1)qG c(K,h)
∑

w∈W (ΦK ,h)

∆′G(w · h)−1 ξλ−ρG (w · h)

×c(Φt)
∑

ϕ∈T (Φ,h,w)

δ(Φ+, ϕ, w · h)ε(ϕ : Φ+) c(1 : E∗ : ϕ+
R(w · h)),

where T (Φ, h, w) denotes the set of all ϕ ∈ T (Φ) such that w ∈W (ΦK , ϕ, h). Using
the formula for Θλ(h) in Theorem 3.3, we see that it suffices to prove that for all
w ∈ W (ΦK , h),

c(Φt)
∑

ϕ∈T (Φ,h,w)

δ(Φ+, ϕ, w · h)ε(ϕ : Φ+) c(1 : E∗ : ϕ+
R(w · h))

= c(1 : E∗ : Φ+
R(w · h)).

Define T (Φ, h) = {ϕ ∈ T (Φ) : ∃S′ ∈ SO(Φ, ϕ) with (1, S′) ∈ Λ(h)}. Let
(w, S′) ∈ Λ(h). Then it is easy to see using Lemma 2.6 that

T (Φ, h, w) = T (Φ, (w, S′) · h).

For w = [v, s] ∈ W (ΦK , h), c(Φt) = c(Φvt). Thus,

c(Φt)
∑

ϕ∈T (Φ,h,w)

δ(Φ+, ϕ, w · h)ε(ϕ : Φ+) c(1 : E∗ : ϕ+
R(w · h))
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depends only on (w, S′) ·h, not on w and h separately, and so we see that it suffices
to prove that for all S ∈ SO(Φ), h ∈ H1

S ∩ Ω′,

c(Φt)
∑

ϕ∈T (Φ,h)

δ(Φ+, ϕ, h)ε(ϕ : Φ+) c(1 : E∗ : ϕ+
R(h)) = c(1 : E∗ : Φ+

R(h)).

Let ϕ ∈ T (Φ, h), and let ψ = ϕ ∩ Φt. Then ϕ+
R(h) = ψ ∩ Φ+

R(h) depends only
on ψ. Further, by definition there is S′ ∈ SO(Φ, ϕ) such that (1, S′) ∈ Λ(h). Thus
S′ ⊂ Φt and spans Φt. Now S′ ⊂ ψ and spans ψ, so that rank ψ = rank Φt. Clearly
every irreducible factor of ψ is of type A1 or B2. Thus ψ ∈ Taug(Φt). Further, since
S′ ⊂ ψ, we have ψ ∈ Tn(Φt) if and only if ψ ∈ T (Φt).

Thus we can write

c(Φt)
∑

ϕ∈T (Φ,h)

ε(ϕ : Φ+)δ(Φ+, ϕ, h)c(1 : E∗ : ϕ+
R(h))

= c(Φt)
∑

ψ∈Taug(Φt)

c(1 : E∗ : ψ ∩ Φ+
R(h))

∑
ϕ∈T (Φ,h,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h),

where for ψ ∈ Taug(Φt), T (Φ, h, ψ) is the set of all ϕ ∈ T (Φ, h) such that ϕ∩Φt = ψ.
Let ψ ∈ Taug(Φt). If there is no S′ ∈ SO(Φ) such that (1, S′) ∈ Λ(h) and

S′ ⊂ ψ, then by the above T (Φ, ψ, h) = ∅. Suppose that there is S′ ∈ SO(Φ)
such that (1, S′) ∈ Λ(h) and S′ ⊂ ψ. Then for all ϕ ∈ T (Φ, ψ), S′ ⊂ ϕ so that
T (Φ, ψ) = T (Φ, ψ, h). Now if ψ 6∈ T (Φ),∑

ϕ∈T (Φ,h,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =
∑

ϕ∈T (Φ,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = 0

by Lemma 6.8. If ψ ∈ T (Φt), then ψ ∈ Tn(Φt), and again using Lemma 6.8,∑
ϕ∈T (Φ,h,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =
∑

ϕ∈T (Φ,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = ε(ψ : Φ+
R(h)).

Thus by Theorem 3.4 we have

c(Φt)
∑

ϕ∈T (Φ,h)

ε(ϕ : Φ+) δ(Φ+, ϕ, h) c(1 : E∗ : ϕ+
R(h))

= c(Φt)
∑

ψ∈Tn(Φt)

ε(ψ : Φ+
R(h)) c(1 : E∗ : ψ ∩Φ+

R(h)) = c(1 : E∗ : Φ+
R(h)).

7. Proof of Lemma 6.8

We keep the notation of §6. We may as well assume that Φ is irreducible.
Throughout this section we fix S ∈ SO(Φ) and h = ta ∈ H1

S ∩ Ω′. Further, we
fix γ ∈ TS ∩ BS such that h ∈ γH0

S , and H1 ∈ tS such that γ−1t = exp(H1). Let
H2 = c−1

S log a ∈ ibS . Thus h = γ exp(cSH) where H = H1+H2. In the case that Φ
is of type A2n, n ≥ 1, by Lemma 6.2 we can assume that γ = 1, and H1 +cSH2 ∈ ω.
Thus in this case for any τ ∈ EΦ we define eτ (γ) = 1. For any α ∈ Φ, write

∆(α) = e
α(H)

2 − e−α(γ)e−
α(H)

2 ;

δ(α) = ∆(α)|∆(α)|−1.

The following lemma is an easy consequence of the definitions.
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Lemma 7.1. For any ϕ ∈ T (Φ) and any choice Φ+ of positive roots,

δ(Φ+, ϕ, h) = eρ(Φ
+,ϕ)(γ)

∏
α∈Φ+\(ϕ∩Φ+)

δ(α).

Lemma 7.2. For any ϕ ∈ T (Φ), ε(ϕ : Φ+) δ(Φ+, ϕ, h) is independent of the choice
Φ+ of positive roots.

Proof. Fix one choice Φ+ of positive roots and write ϕ+ = ϕ ∩Φ+. Let w ∈W (Φ)
so that wΦ+ is another choice of positive roots. Then as in Lemma 6.3 we can
write w = uv−1 where u ∈ W (ϕ) with wΦ+ ∩ ϕ = uϕ+ and v ∈ W (ϕ : Φ+). Then
as in Lemma 6.3,

ε(ϕ : wΦ+) = det v ε(ϕ : Φ+).

By Lemma 7.1 we have

δ(Φ+, ϕ, h) = eρ(Φ
+)−ρ(ϕ+)(γ)

∏
α∈Φ+\(ϕ+)

δ(α).

It is easy to check from the definition that for any α ∈ Φ,

δ(−α) = −eα(γ)δ(α).

Thus we have ∏
α∈wΦ+

δ(α) = detweρ(Φ
+)−ρ(wΦ+)(γ)

∏
α∈Φ+

δ(α),

∏
α∈uϕ+

δ(α) = detueρ(ϕ
+)−ρ(uϕ+)(γ)

∏
α∈ϕ+

δ(α).

Thus

δ(wΦ+, ϕ, h) = det vδ(Φ+, ϕ, h).

Let ΦS = cSΦ = Φ(g
C
, hS,C). Then we can define

ΦR,S = {α ∈ ΦS : α(H) ∈ R ∀ H ∈ hS};

ΦI,S = {α ∈ ΦS : α(H) ∈ iR ∀ H ∈ hS};

ΦCPX,S = ΦS\(ΦR,S ∪ ΦI,S).

As in §4 we let σ be the involution of g
C

with fixed points g. For each α ∈ ΦS we
have ασ ∈ ΦS defined by

ασ(H) = α(σ(H)), H ∈ hS,C .
Then ασ = α if and only if α ∈ ΦR,S and ασ = −α if and only if α ∈ ΦI,S .

Define

ΦR = c−1
S ΦR,S , ΦI = c−1

S ΦI,S, ΦCPX = c−1
S ΦCPX,S .

For any α ∈ Φ we will write ασ,S = c−1
S (cSα)σ. Let Φ+ be a choice of positive

roots for Φ. We say that Φ+
CPX = Φ+ ∩ΦCPX is σ-stable if α ∈ Φ+

CPX if and only
if ασ,S ∈ Φ+

CPX .

Lemma 7.3. Let ϕ ∈ T (Φ) such that ϕ ∩ Φt ∈ Taug(Φt). Then for any α ∈ Φ,
α ∈ ϕ if and only if ασ,S ∈ ϕ.
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Proof. Suppose α ∈ Φ, H1 ∈ tS , H2 ∈ bS . Then ασ,S(H1 + H2) = α(−H1 + H2).
Since ϕ ∩ Φt ∈ Taug(Φt), there is an orthogonal set S′ ⊂ ϕ ∩ Φt such that [S′] =
rank Φt. Let wS′ denote the product of the reflections corresponding to the roots
in S′. Then wS′ ∈ W (ϕ) and wS′(H1 + H2) = H1 −H2 for all H1 ∈ tS , H2 ∈ bS .
Thus for all α ∈ Φ, ασ,S = −wS′α. Thus α ∈ ϕ if and only if ασ,S ∈ ϕ.

Note that

Φt = {α ∈ ΦR : eα(γ) = 1}.
Define

Ψ = ΦI ∪ Φt.

Lemma 7.4. (i) rank T (Ψ) = rank T (Φ).
(ii) For every ϕ ∈ T (Φ) such that ϕ ∩ Φt ∈ Taug(Φt), ϕ ∩ ΦI ∈ Taug(ΦI), and

ϕ ∩Ψ ∈ Taug(Ψ).
(iii) For every ψ ∈ T (Ψ) there is ϕ ∈ T (Φ) such that ϕ ∩ Ψ = ψ. Moreover, ϕ

is unique unless Φ is of type Cn, n odd, and Ψ has three irreducible factors of
type Cr, r odd.

(iv) Suppose that Φ is of type A2n, n ≥ 1. Then ΦI is of type A2s for some
0 ≤ s ≤ n. Otherwise, Ψ contains no irreducible factors of type A2k, k ≥ 1.

Proof. (i) and (ii) are elementary.
(iii) Let ψ ∈ T (Ψ). Then every irreducible factor of ψ is of type A1 or B2,

and rank ψ = rank T (Ψ) = rank T (Φ), so ψ ∈ Taug(Φ). By Lemma 5.6 there is
ϕ ∈ T (Φ) such that ψ ⊂ ϕ. Then ϕ ∩Ψ ∈ Taug(Ψ) and contains the two-structure
ψ. Thus ϕ ∩Ψ = ψ.

Now suppose that ϕ is not uniquely determined by ψ. By Lemma 5.6, Φ is of
type Bn, Cn, or F4. When Φ is of type Bn, Ψ will be of the form Dk

2×D2p×Br×Bs
where k, p, r, s ≥ 0 with 2k+ 2p+ r+ s = n, and the D2, D2p factors consist of long
roots in Φ. Thus ψ contains at most two irreducible factors of type A1 generated
by short roots coming from the Br and Bs factors where r or s is odd. Thus by
Lemma 5.6, ϕ is uniquely determined by ψ.

When Φ is of type F4, Ψ will be of the form F4, B4, B3 × B1, B2 × B2, B2 ×
A2

1, B
2
1 ×A2

1, or C3×A1, where we use A1 to denote an irreducible factor generated
by one long root and B1 to denote an irreducible factor generated by one short
root. Thus ψ will be of the form B2

2 , B2 × B2
1 , B2 × A2

1, or B2
1 × A2

1. Again, by
Lemma 5.6, T (Φ, ψ) will contain exactly one element.

When Φ is of type Cn, Ψ will be of the form Dk
2×Cp×Cr×Cs where k, p, r, s ≥ 0

with 2k+p+ r+s = n, and the D2 factors are generated by short roots of Φ. Thus
ψ has less than three irreducible factors of type A1 generated by long roots, and
hence ϕ is unique by Lemma 5.6, unless p, r, s are all odd. In this case n must also
be odd.

(iv) Since Φt is spanned by strongly orthogonal roots, it contains no irreducible
factors of type A2k, k ≥ 1. Further, ΦI is the orthogonal complement in Φ of S. Now
if Φ is spanned by orthogonal roots, so is ΦI , so it contains no A2k factors. Suppose
that Φ is not spanned by orthogonal roots. Then it is of type A2n, A2n+1, D2n+1,
or E6, and as in the proof of Theorem 5.3, the orthogonal complement of one
root is of type A2n−2, A2n−1, D2n−1 ×A1, or A5 respectively. Thus the orthogonal
complement of an arbitrary orthogonal set S is of type A2s when Φ is of type A2n,
and contains only simple factors of type A2k+1, D2k+1, or E6 otherwise.
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Let Ψ+ be any choice of positive roots for Ψ. Then for any ψ ∈ Taug(Ψ), we
define

δ0(Ψ+, ψ, h) =
∏

α∈Ψ+\ψ+

δ(α)

where ψ+ = ψ ∩Ψ+. For ψ ∈ Taug(Ψ), let T (Φ, ψ) = {ϕ ∈ T (Φ) : ϕ ∩Ψ = ψ}.

Lemma 7.5. Let Φ+ be any choice of positive roots for Φ and let ψ ∈ Taug(Ψ), ϕ ∈
T (Φ, ψ). Then

δ(Φ+, ϕ, h) = eρ(Φ
+,ϕ)(γ)δ0(Ψ ∩ Φ+, ψ, h)

∏
α∈Φ+

CPX\(ϕ∩Φ+
CPX )

δ(α).

If in addition, Φ+
CPX is σ-stable, then∏

α∈Φ+
CPX\(ϕ∩Φ+

CPX)

δ(α) = 1.

Proof. Let ϕ ∈ T (Φ, ψ). By Lemma 7.1,

δ(Φ+, ϕ, h) = eρ(Φ
+,ϕ)(γ)

∏
α∈Φ+\ϕ+

δ(α).

Let α ∈ Φ+\Ψ+. Then α ∈ (ΦR\Φt) ∪ ΦCPX . If α ∈ ΦR\Φt, then e−α(γ) = −1
so that

∆(α) = e
α(H)

2 + e−
α(H)

2

is real and positive since α(H) is real. Thus δ(α) = 1 in this case. Thus∏
α∈Φ+\ϕ+

δ(α) = δ0(Ψ ∩ Φ+,Ψ ∩ ϕ, h)
∏

α∈Φ+
CPX\ϕ∩Φ+

CPX

δ(α).

Suppose that Φ+
CPX is σ-stable. Then Φ+

CPX can be divided into pairs α, ασ,S .
Since e−α(γ) = ±1 is real, we see that

∆(ασ,S) = ∆(α).

Thus

δ(ασ,S)δ(α) = 1.

Further, by Lemma 7.3, α ∈ ϕ if and only if ασ,S ∈ ϕ. Thus∏
α∈Φ+

CPX\ϕ∩Φ+
CPX

δ(α) = 1.

Lemma 7.6. Let Φ+ be any choice of positive roots for Φ and let ψ ∈ Taug(Ψ), ψ 6∈
T (Ψ). Then ∑

ϕ∈T (Φ,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = 0.
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Proof. The statement is vacuous when Φ is of type A2n since in this case Ψ has
one root length so that Taug(Ψ) = T (Ψ). Thus we can assume that Φ is not of type
A2n. Further, since both sides of the equation are independent of Φ+ by Lemma
7.2, it is enough to prove the lemma for one choice of Φ+.

Since ψ 6∈ T (Ψ), by Lemma 5.6 there are α1, α2 ∈ ψ occurring in A1 factors of ψ
such that α1, α2 are an orthogonal basis for root system of type B2 in Ψ. Note that
this implies that α1, α2 are either both in Φt or both in ΦI . Now α0 = c(α1−α2) ∈ Ψ
where c ∈ {1, 1/2}. Let s denote the reflection corresponding to α0. Then s
interchanges α1 and α2, and fixes every root of Ψ orthogonal to both α1 and α2.
In particular, sψ = ψ.

Let B = {β1, ..., βn} be an ordered orthogonal basis of ψ such that β1, ..., βr is
a basis for ψ ∩ Φt and βr+1, ..., βn is a basis for ψ ∩ ΦI . Further, if α1, α2 ∈ Φt,
then we take βi = αi, i = 1, 2, while if α1, α2 ∈ ΦI , we take βn−1 = α1, βn = α2.
Let Φ+ = Φ+(B). Then Φ+

CPX is σ-stable. Let ϕ ∈ T (Φ, ψ), and suppose that
there is α ∈ ϕ+ such that sα ∈ Φ−. Since s interchanges α1 and α2 and fixes
every other βi ∈ B, we must have 〈α, α1〉 > 0, 〈α, α2〉 < 0. In particular, we must
have α1, α2 in the same simple factor of ϕ. But then α0 ∈ ϕ ∩ Ψ = ψ. This
contradicts the assumption that α1, α2 occur in A1 factors of ψ. Thus sϕ+ ⊂ Φ+

for all ϕ ∈ T (Φ, ψ).
Let ϕ ∈ T (Φ, ψ). Then sϕ∩Ψ = s(ϕ∩Ψ) = sψ = ψ, so that sϕ ∈ T (Φ, ψ) also.

Further, since s2 = 1, s(sϕ) = ϕ. Thus we can divide T (Φ, ψ) into pairs, ϕ, sϕ.
But by Lemma 5.2,

ε(sϕ : Φ+) = det s ε(ϕ : Φ+) = −ε(ϕ : Φ+).

Further

ρ(Φ+, sϕ) = ρ(Φ+, ϕ) + ρ(ϕ+)− sρ(ϕ+).

Since ρ(ϕ+) is a weight for Φ and hence for Ψ, ρ(ϕ+)− sρ(ϕ+) is in the root lattice
of Ψ, so that

eρ(Φ
+,sϕ)(γ) = eρ(Φ

+,ϕ)(γ)eρ(ϕ
+)−sρ(ϕ+)(γ) = eρ(Φ

+,ϕ+)(γ).

Then, by Lemma 7.5, since Φ+
CPX is σ-stable,

δ(Φ+, sϕ, h) = eρ(Φ
+,sϕ)(γ)δ0(Ψ ∩Φ+, ψ, h)

= eρ(Φ
+,ϕ)(γ)δ0(Ψ ∩ Φ+, ψ, h) = δ(Φ+, ϕ, h).

Thus

ε(sϕ : Φ+)δ(Φ+, sϕ, h) + ε(ϕ : Φ+)δ(Φ+, ϕ, h) = 0

for all ϕ ∈ T (Φ, ψ).

Fix ψ ∈ T (Ψ), and ϕ ∈ T (Φ, ψ). Let B be a basis for ψ which contains two long
orthogonal roots from every irreducible factor of ψ of type B2.

Lemma 7.7. There is an ordering B = {α1, ..., αn} with the following properties.
(i) For every irreducible factor ϕj of ϕ, the roots in B ∩ ϕj are adjacent in the

ordering.
(ii) Let Φ be of type Cn, n odd, and let αs be the root in B which generates the

unique irreducible factor of ϕ of type C1. Then if αs ∈ Φt, it is the first root
in B, while if αs ∈ ΦI , then it is the last root in B.
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(iii) Let Φ+ = Φ+(B). Then ∏
α∈Φ+

CPX\ϕ∩Φ+
CPX

δ(α) = 1.

Proof. Let Ψi be an irreducible factor of Ψ. We will call Ψi imaginary, respectively
real, if it is contained in ΦI , respectively Φt. Since Ψ = ΦI ∪ Φt every Ψi is either
real or imaginary. Similarly, we call every element of Φt a real root of Ψ and every
element of ΦI an imaginary root of Ψ.

Suppose first that ϕ contains no irreducible factors of type B2. Then conditions
(i) and (ii) are vacuous, so that it suffices to produce an ordering of B which satisfies
(iii). For this we just need to order B so that the real roots precede the imaginary
roots, so that Φ+

CPX is σ-stable.
Now suppose that ϕ contains an irreducible factor of type B2, so that Φ is of

type Bn, Cn, or F4. Let Ψi, i = 1, 2, be distinct irreducible factors of Ψ. We will
say they are linked if there is an irreducible factor ϕj of ϕ of type B2 which has
nonempty intersection with both. In this case ϕj ∩ Ψi is an irreducible factor of
ψi = ψ∩Ψi of type A1, and the roots in ϕj ∩Ψ1 and ϕj ∩Ψ2 have the same length
in Φ.

Suppose that Φ is of type Bn. Then ΦI is of type Br × Ak1 and Φt is of type
Ak1 × D2p × Bq where r + 2k + 2p + q = n. Let Ψ2i−1, 1 ≤ i ≤ k, denote the
irreducible factors of Φt of type A1. Then for each 1 ≤ i ≤ k there is a unique
irreducible factor Ψ2i of ΦI of type A1 which is linked with Ψ2i−1. The irreducible
factor Ψ2k+1 of Φt of type D2p cannot be linked to another factor. Finally, the
factors Ψ2k+2 of Φt of type Bq and Ψ2k+3 of ΦI of type Br are linked just in case
q and r are both odd. Now Ψ1, ...,Ψ2k+3 is an ordering of the irreducible factors of
Ψ with the property that linked factors are adjacent.

Now we order B as follows. If Ψi is not linked to any other irreducible factors,
then we order Bi = Ψi ∩B so that if two roots are in the same irreducible factor of
ϕ they are adjacent in the ordering. If Ψi,Ψi+1 are linked, we order Bi so that if
two roots are in the same irreducible factor of ϕ they are adjacent in the ordering,
and the linked root is last. We order Bi+1 so that if two roots are in the same
irreducible factor of ϕ they are adjacent in the ordering, and the linked root is
first. Now order B by taking B = B1,B2, ...,B2k+3. This produces an ordering for
B which satisfies (i).

Let α ∈ ΦCPX and let αi be the first element of B such that 〈α, αi〉 6= 0. Suppose
that αi ∈ ΦI . If αi ∈ Ψ2k+3, then α is orthogonal to every real root of B, so that
α ∈ ΦI . Suppose that αi ∈ Ψ2j for some 1 ≤ j ≤ k. Write B2j−1 = {β}. Now

α ∈ Φβ = {γ ∈ Φ : 〈γ, β〉 = 0}.

Since β is a long root and Φ is of type Bn, Φβ is of type A1 × Bn−2. Here the
factor of type A1 is Ψ2j and the factor of type Bn−2 is the set of all γ ∈ Φ which
are orthogonal to both β and αi. Since 〈α, αi〉 6= 0, we must have α = ±αi ∈ ΦI .
These contradictions show that αi ∈ Φt. Thus Φ+

CPX is σ-stable so that (iii) is
satisfied.

Suppose that Φ is of type Cn. Then ΦI is of type Cr × Ak1 and Φt is of type
Ak1 × Cp × Cq where r + 2k + p + q = n. Define Ψi, 1 ≤ i ≤ 2k, as in the Bn
case. When n is odd we let αs denote the root of B which generates the unique
irreducible factor of ϕ0 of type A1.
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Suppose that n is even, or that n is odd and αs ∈ ΦI . Let Ψ2k+3 be the
irreducible factor of ΦI of type Cr. The factors of Φt of type Cp and Cq should be
labeled Ψ2k+1 and Ψ2k+2. If Ψ2k+3 is linked to one of these two factors, then it
should be labeled Ψ2k+2, while the remaining factor is Ψ2k+1. Now Ψ1, ...,Ψ2k+3

is an ordering of the irreducible factors of Ψ with the property that linked factors
are adjacent. We now order B as in the Bn case. In addition, if n is odd, then
αs ∈ Ψ2k+3 and this factor is not linked to any other. Thus we can order the roots
in B ∩Ψ2k+3 so that αs is last. Using the argument in the Bn case, with the roles
of long and short roots reversed we see that this ordering satisfies (iii).

Suppose that n is odd, and αs ∈ Φt. Then it is in one of the the factors of Φt of
type Cp, Cq. This factor should be labelled Ψ0. It is not linked to any other factor.
The other factor of this type should be labelled Ψ2k+1 and the irreducible factor of
ΦI of type Cr should be labelled Ψ2k+2. Now Ψ0, ...,Ψ2k+2 is an ordering of the
irreducible factors of Ψ with the property that linked factors are adjacent. Order
B as usual. Since Ψ0 is not linked, we can order the roots in B ∩ Ψ0 so that αs is
first, and as above this ordering satisfies (iii).

Finally, suppose that Φ is of type F4. If ΦI consists of only one irreducible
factor, then we can easily order the irreducible factors of Ψ so that any linked
irreducible factors are adjacent, and the imaginary factor is last. As above this
yields an ordering of B satisfying (i) and (iii).

Now suppose that Φ is of type F4 and ΦI is reducible. This occurs only when S
consists of two roots, one short and one long. In this case Ψ = {±αi, 1 ≤ i ≤ 4}
is of type B2

1 × A2
1 and we can write Φt = Ψ1 ∪ Ψ3 and ΦI = Ψ2 ∪ Ψ4 where

Ψi = {±αi}, 1 ≤ i ≤ 4. We will order the roots so that α1 and α2 have the same
length and α3 and α4 have the same length. Then Ψ2i−1 and Ψ2i must be linked,
1 ≤ i ≤ 2, so this ordering satisfies (i).

Let β ∈ Φ+
CPX , and assume that −βσ,S ∈ Φ+. Then we must have 〈β, α1〉 = 0

and 〈β, α2〉 6= 0. There are four roots of this type given by

β1 = c2α2 + c3(α3 + α4), β2 = c2α2 + c3(α3 − α4),

β3 = c2α2 + c3(−α3 + α4), β4 = c2α2 + c3(−α3 − α4)

where c2, c3 ∈ {1/2, 1}. Further, β3 = −βσ,S1 and β4 = −βσ,S2 . Now, since for
i = 1, 2,

δ(βi)δ(−βσ,Si ) = −eβi(γ),
4∏

1=1

δ(βi) = eβ1+β2(γ).

But β1 + β2 = 2c2α2 + 2c3α3 and γ = exp(H0) where H0 = πi(n1H
∗
α1

+ n3H
∗
α3

)
with ni ∈ Z, i = 1, 3. Thus

(β1 + β2)(H0) = 2πi2c3n3 ∈ 2πiZ

so that
4∏

1=1

δ(βi) = 1.

Now ϕ ∩Ψ = ψ = Ψ since all irreducible factors of Ψ are of type A1. Since the
orthogonal roots in a factor of type B2 must have the same length, ϕ = ϕ1 ∪ ϕ2



DISCRETE SERIES CHARACTERS 2595

where ϕi is the unique factor of type B2 containing α2i−1 and α2i, i = 1, 2. Thus
βi 6∈ ϕ, 1 ≤ i ≤ 4. Since for all other α ∈ Φ+

CPX , α
σ,S ∈ Φ+ we have∏

α∈Φ+
CPX\(ϕ∩Φ+

CPX)

δ(α) = 1.

For any ψ ∈ T (Ψ) and choice Ψ+ of positive roots for Ψ, we have defined

δ0(Ψ+, ψ, h) =
∏

α∈Ψ+\(ψ∩Ψ+)

δ(α).

If Φ is not of type A2n, then by Theorem 5.5 and Lemma 7.4(iv), ρ(Ψ+, ψ) is in
the root lattice of Ψ so that

eρ(Ψ
+,ψ)(γ) = 1.

When Φ is of type A2n, eρ(Ψ
+,ψ)(γ) = 1 by definition. Thus we have

δ0(Ψ+, ψ, h) = δ(Ψ+, ψ, h) = eρ(Ψ
+,ψ)(γ)

∏
α∈Ψ+\(ψ∩Ψ+)

δ(α).

By Lemma 7.2 applied to Ψ, we see that ε(ψ : Ψ+)δ(Ψ+, ψ, h) is independent of
the choice of Ψ+.

Lemma 7.8. Let Φ+ and Ψ+ be any choices of positive roots and let ψ ∈ T (Ψ).
Then ∑

ϕ∈T (Φ,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = ε(ψ : Ψ+)δ(Ψ+, ψ, h).

Proof. Fix ϕ ∈ T (Φ, ψ), and let B(ϕ) = {α1, ..., αn} be an ordered basis for ψ
satisfying the conditions in Lemma 7.7 with respect to ϕ. Let

Φ+(ϕ) = Φ+(B(ϕ)), Ψ+(ϕ) = Ψ+(B(ϕ)).

Then ε(ψ : Ψ+(ϕ)) = 1 by definition. Further,

δ(Φ+(ϕ), ϕ, h) = eρ(Φ
+(ϕ),ϕ)(γ)δ(Ψ+(ϕ), ψ, h)

by Lemma 7.5.
Modify B = B(ϕ) as follows. If ϕi is an irreducible factor of ϕ of type A1,

then B ∩ ϕi = {αp} for some 1 ≤ p ≤ n, and we set βp = αp. If ϕi is an
irreducible factor of ϕ of type B2, B ∩ ϕi = {αp, αp+1} for some 1 ≤ p ≤ n − 1.
The two roots have consecutive indices by definition, and since they are orthogonal
in a root system of type B2, either both are short or both are long. If both are
long, then we define βp = αp and βp+1 = αp+1. However if both are short, we
replace them by βp = αp + αp+1 and βp+1 = αp − αp+1. This produces an ordered
basis B′ = {β1, ..., βn}, for ϕ which contains two orthogonal long roots from every
irreducible factor of ϕ of type B2, and they are adjacent in the ordering. By
definition, ε(ϕ : Φ+(B′)) = 1. But it is easy to check that Φ+(B) = Φ+(B′). Thus
ε(ϕ : Φ+(ϕ)) = 1.
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Now by Lemma 7.2, for any Φ+ and Ψ+ we have∑
ϕ∈T (Φ,ψ)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =
∑
ϕ

ε(ϕ : Φ+(ϕ))δ(Φ+(ϕ), ϕ, h)

=
∑
ϕ

eρ(Φ
+(ϕ),ϕ)(γ)δ(Ψ+(ϕ), ψ, h)ε(ψ : Ψ+(ϕ))

= ε(ψ : Ψ+)δ(Ψ+, ψ, h)
∑
ϕ

eρ(Φ
+(ϕ),ϕ)(γ).

Thus it suffices to prove that ∑
ϕ∈T (Φ,ψ)

eρ(Φ
+(ϕ),ϕ)(γ) = 1.

Suppose that Φ is not of type C2m+1,m ≥ 1. Then by Lemma 7.4, T (Φ, ψ) = {ϕ}
has only one element. Further, by Lemma 5.4, if Φ is not of type A2n, ρ(Φ+(ϕ), ϕ)
is in the root lattice of Ψ since each βi ∈ B′ is. Thus eρ(Φ

+(ϕ),ϕ)(γ) = 1. If Φ is of
type A2n, then eρ(Φ

+(ϕ),ϕ)(γ) = 1 by definition.
Suppose that Φ is of type C2m+1, and fix ϕ ∈ T (Φ, ψ). Let α0 denote the element

of B which generates the irreducible factor of ϕ of type C1. If α0 ∈ Φt, then it is
first in B′. Thus again by Lemma 5.4 ρ(Φ+, ϕ) is in the root lattice of Ψ so that as
above

eρ(Φ
+(ϕ),ϕ)(γ) = 1.

Suppose that α0 ∈ ΦI . Then it is last in B′ and by Lemma 5.4,

ρ(Φ+(ϕ), ϕ) =
1
2

2m∑
i=1

βi + λ

where λ is in the root lattice of Ψ. Thus

eρ(Φ
+(ϕ),ϕ)(γ) = e(1/2)

∑2m
i=1 βi(γ).

Now ΦI is of type Ak1 ×Cr and Φt is of type Ak1 ×Cp ×Cq, and by the choice of B
in Lemma 7.7, δi = 1

2 (β2i−1 + β2i) ∈ Ψ for all 1 ≤ i ≤ m, except in the case that p
and q are both odd, in which case exactly one δi ∈ ΦR\Φt. Thus

eρ(Φ
+(ϕ),ϕ)(γ) =

{
−1, if p and q are both odd;
1, otherwise.

Now if exactly one of p, q, r is odd, then T (Φ, ψ) = {ϕ} has only one element and
eρ(Φ

+(ϕ),ϕ)(γ) = 1. If all three of p, q, r are odd, then T (Φ, ψ) = {ϕi, 1 ≤ k ≤ 3}.
For two of these elements, say ϕ1 and ϕ2, the unique irreducible factor of type C1

is contained in Φt. For the other, ϕ3, the unique irreducible factor of type C1 is
contained in ΦI . Thus by the above,

3∑
i=1

eρ(Φ
+(ϕi),ϕi)(γ) = 1 + 1− 1 = 1.

Lemma 7.9. There is a choice Ψ+(h) of positive roots for Ψ such that Ψ+(h)∩Φt =
Φ+
R(h) and

δ(Ψ+(h), ψ, h) = (−1)r(ΦI)

for every ψ ∈ T (Ψ). Here r(ΦI) is defined as in Theorem 5.5.
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Proof. Recall that for any choice of Ψ+, ψ ∈ T (Ψ), ψ+ = ψ ∩Ψ+,

δ(Ψ+, ψ, h) = δ0(Ψ+, ψ, h) =
∏

α∈Ψ+\ψ+

δ(α).

We have h = γ exp(cSH) where H = H1 +H2, H1 ∈ tS , H2 = c−1
S log a. Now for

all α ∈ Ψ, eα(γ) = 1, so that

∆(α) = exp(α(H)/2)− exp(−α(H)/2).

Suppose that α ∈ Φ+
R(h). Then α(H) = α(H2) = α(c−1

S log a) is real and
positive. Thus ∆(α) = 2 sinh(α(H2)/2) is real and positive, so that δ(α) = 1.
Let Φ+

I be any choice of positive roots for ΦI , and write ψ+
I = ψ ∩ Φ+

I . Then if
Ψ+ = Φ+

R(h) ∪ Φ+
I , we have

δ(Ψ+, ψ, h) =
∏

α∈Φ+
I \ψ

+
I

δ(α).

Define

LS = {H ∈ tS : α(H) ∈ 2πiZ ∀ α ∈ ΦI}.
Then we can write H1 = H ′1+H ′0 whereH ′0 ∈ LS and H ′1 ∈ tS satisfies |α(H ′1)| ≤ 2π
for all α ∈ ΦI . When Φ is of type A2n, we have H1 + cSH2 ∈ ω, so that for α ∈ ΦI ,
|α(H1)| = |Im α(H1 + cSH2)| < π. Thus in this case we can take H1 = H ′1, H

′
0 = 0.

For α ∈ ΦI , write

∆′(α) = exp(α(H ′1)/2)− exp(−α(H ′1)/2), δ′(α) = ∆′(α)|∆′(α)|−1.

For every α ∈ ΦI(S), α(H ′0) ∈ 2πiZ, so that

exp(α(H ′0)/2) = exp(−α(H ′0)/2).

Thus

∆(α) = exp(α(H1)/2)− exp(−α(H1)/2) = exp(α(H ′0)/2)∆′(α);∏
α∈Φ+

I \ψ
+
I

∆(α) = exp((ρ(Φ+
I )− ρ(ψ+

I ))(H ′0))
∏

α∈Φ+
I \ψ

+
I

∆′(α).

When Φ is of type A2n, H
′
0 = 0. Otherwise, for every ψ ∈ T (Ψ), ψI ∈ T (ΦI) so

that by Theorem 5.5 and Lemma 7.4(iv), ρ(Φ+
I ) − ρ(ψ+

I ) is in the root lattice of
ΦI . Thus in any case we have

exp((ρ(Φ+
I )− ρ(ψ+

I ))(H ′0)) = 1; δ(Ψ+, ψ, h) =
∏

α∈Φ+
I \ψ

+
I

δ′(α).

Let α ∈ ΦI . Then tα = α(−iH ′1)/2 is real, and ∆′(α) = 2i sin tα. By our choice
of H ′1, we have −π < tα < π. Further, since ∆(α) 6= 0, we have tα 6= 0, so we can
define a choice Φ+

I (h) of positive roots for ΦI by α ∈ Φ+
I (h) if and only if tα > 0.

Now for α ∈ Φ+
I (h), 0 < tα < π so that sin tα > 0 and δ′(α) = i.

Let Ψ+(h) = Φ+
I (h) ∪ Φ+

R(h). For ψ ∈ T (Ψ), 2r(ΦI) = [Φ+
I (h)\(ψ ∩ Φ+

I (h))] by
definition. Thus by the above,

δ(Ψ+(h), ψ, h) = i2r(ΦI) = (−1)r(ΦI).
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Proof of Lemma 6.8. Let ψt ∈ Taug(Φt). Then we must show that for any choice
of Φ+, ∑

ϕ∈T (Φ,ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =

{
ε(ψt : Φ+

R(h)), if ψt ∈ T (Φt);
0, otherwise.

Fix ψt ∈ Taug(Φt). For each ϕ ∈ T (Φ, ψt), ϕ∩Ψ = ψI ∪ ψt where ψI ∈ Taug(ΦI)
by Lemma 7.4. We can write∑
ϕ∈T (Φ,ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =
∑

ψI∈Taug(ΦI )

∑
ϕ∈T (Φ,ψI∪ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h).

But by Lemma 7.6, ∑
ϕ∈T (Φ,ψI∪ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = 0

unless ψI ∪ ψt ∈ T (Ψ). In particular, if ψt 6∈ T (Φt), we have∑
ϕ∈T (Φ,ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = 0,

and if ψt ∈ T (Φt), we only get a nonzero contribution from ψI ∈ T (ΦI).
Suppose that ψt ∈ T (Φt). Then by the above,∑
ϕ∈T (Φ,ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =
∑

ψI∈T (ΦI )

∑
ϕ∈T (Φ,ψI∪ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h).

Thus by Lemma 7.8, for any choice Ψ+ of positive roots for Ψ,∑
ϕ∈T (Φ,ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) =
∑

ψI∈T (ΦI )

ε(ψI ∪ ψt : Ψ+)δ(Ψ+, ψI ∪ ψt, h).

By Lemma 7.9, we can choose Ψ+(h) so that Ψ+(h) ∩ Φt = Φ+
R(h) and for all

ψI ∈ T (ΦI),

δ(Ψ+(h), ψI ∪ ψt, h) = (−1)r(ΦI).

Write Φ+
I (h) = ΦI ∩Ψ+(h). Using this choice of Ψ+(h),∑

ϕ∈T (Φ,ψt)

ε(ϕ : Φ+)δ(Φ+, ϕ, h) = (−1)r(ΦI)
∑

ψI∈T (ΦI )

ε(ψI ∪ ψt : Ψ+(h))

= (−1)r(ΦI)ε(ψt : Φ+
R(h))

∑
ψI∈T (ΦI )

ε(ψI : Φ+
I (h)) = ε(ψt : Φ+

R(h))

by Theorem 5.5.
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