Igusa’s local zeta functions of semiquasihomogeneous polynomials
HTML articles powered by AMS MathViewer
- by W. A. Zúñiga-Galindo
- Trans. Amer. Math. Soc. 353 (2001), 3193-3207
- DOI: https://doi.org/10.1090/S0002-9947-01-02323-6
- Published electronically: April 11, 2001
- PDF | Request permission
Abstract:
In this paper, we prove the rationality of Igusa’s local zeta functions of semiquasihomogeneous polynomials with coefficients in a non-archimedean local field $K$. The proof of this result is based on Igusa’s stationary phase formula and some ideas on Néron $\pi$-desingularization.References
- Arnold V., Varchenko A. and Gussein-Zadé S., Singularités des applications differéntiables, vol. 2, Editions Mir, Moscow, 1986.
- J. Briançon, M. Granger, Ph. Maisonobe, and M. Miniconi, Algorithme de calcul du polynôme de Bernstein: cas non dégénéré, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 3, 553–610 (French, with English summary). MR 1030839
- J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, DOI 10.1007/BF01389133
- Jan Denef, Report on Igusa’s local zeta function, Astérisque 201-203 (1991), Exp. No. 741, 359–386 (1992). Séminaire Bourbaki, Vol. 1990/91. MR 1157848
- J. Denef, Poles of $p$-adic complex powers and Newton polyhedra, Nieuw Arch. Wisk. (4) 13 (1995), no. 3, 289–295. MR 1378800
- Jay R. Goldman, Numbers of solutions of congruences: Poincaré series for algebraic curves, Adv. in Math. 62 (1986), no. 1, 68–83. MR 859254, DOI 10.1016/0001-8708(86)90088-5
- Larry Joel Goldstein, Errata for “Dedekind sums for a Fuchsian group. I” (Nagoya Math. J. 50 (1973), 21–47), Nagoya Math. J. 53 (1974), 235–237. MR 347739
- Jun-ichi Igusa, Complex powers and asymptotic expansions. II. Asymptotic expansions, J. Reine Angew. Math. 278(279) (1975), 307–321. MR 404215, DOI 10.1515/crll.1975.278-279.307
- Jun-ichi Igusa, Complex powers of irreducible algebroid curves, Geometry today (Rome, 1984) Progr. Math., vol. 60, Birkhäuser Boston, Boston, MA, 1985, pp. 207–230. MR 895155
- Jun-ichi Igusa, A stationary phase formula for $p$-adic integrals and its applications, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 175–194. MR 1272029
- François Loeser, Fonctions d’Igusa $p$-adiques, polynômes de Bernstein, et polyèdres de Newton, J. Reine Angew. Math. 412 (1990), 75–96 (French). MR 1079002, DOI 10.1515/crll.1990.412.75
- D. Meuser, On the poles of a local zeta function for curves, Invent. Math. 73 (1983), no. 3, 445–465. MR 718941, DOI 10.1007/BF01388439
- André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. 21 (1964), 128 (French). MR 179172, DOI 10.1007/bf02684271
- Jun Wang, On the Poincaré series for diagonal forms, Proc. Amer. Math. Soc. 116 (1992), no. 3, 607–611. MR 1116274, DOI 10.1090/S0002-9939-1992-1116274-3
Bibliographic Information
- W. A. Zúñiga-Galindo
- Affiliation: Universidad Autónoma de Bucaramanga, Laboratorio de Computo Especializado, A.A. 1642, Bucaramanga, Colombia
- Address at time of publication: 6351 SW 43rd Street, Miami, Florida 33155
- Email: wzuniga@bumanga.unab.edu.co
- Received by editor(s): June 3, 1997
- Received by editor(s) in revised form: May 16, 2000
- Published electronically: April 11, 2001
- Additional Notes: This work was supported by COLCIENCIAS, contract #063-98
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3193-3207
- MSC (2000): Primary 11D79, 11S40, 14G10
- DOI: https://doi.org/10.1090/S0002-9947-01-02323-6
- MathSciNet review: 1608309