Link complements and the Bianchi modular groups
HTML articles powered by AMS MathViewer
- by Mark D. Baker
- Trans. Amer. Math. Soc. 353 (2001), 3229-3246
- DOI: https://doi.org/10.1090/S0002-9947-01-02555-7
- Published electronically: April 9, 2001
- PDF | Request permission
Abstract:
We determine the values of $m$ for which the Bianchi modular group $\operatorname {PSL}_2(\mathcal {O}_m)$ contains a link group.References
- Mark D. Baker, Link complements and integer rings of class number greater than one, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 55–59. MR 1184402
- GAP (Groups, algorithms, and programming). Available from: http://www.gap.dcs.st-and.ac.uk/˜gap/.
- Allen Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2) 27 (1983), no. 2, 345–355. MR 692540, DOI 10.1112/jlms/s2-27.2.345
- A Hatcher, Bianchi orbifolds of small discriminant, preprint (available from author’s web page).
- Pari, Available from Université de Bordeaux: http://www.math.u-bordeaux.fr/A2X.
- Robert Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281–288. MR 412416, DOI 10.1017/S0305004100051094
- Robert Riley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra, Math. Comp. 40 (1983), no. 162, 607–632. MR 689477, DOI 10.1090/S0025-5718-1983-0689477-2
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 272790, DOI 10.2307/1970630
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2
- W. Thurston, The geometry and topology of $3$-manifolds, Mimeographed notes, Princeton University, 1978.
- Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670, DOI 10.1007/BF01455567
- J. Weeks, SnapPea 2.4 PPC. Available from: weeks@geom.umn.edu.
- Norbert Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 427–436. MR 503003, DOI 10.1017/S0305004100055250
Bibliographic Information
- Mark D. Baker
- Affiliation: IRMAR, Université de Rennes 1, 35042 Rennes cedex, France
- Received by editor(s): June 3, 1998
- Received by editor(s) in revised form: March 8, 1999
- Published electronically: April 9, 2001
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 3229-3246
- MSC (2000): Primary 57M25; Secondary 11F06
- DOI: https://doi.org/10.1090/S0002-9947-01-02555-7
- MathSciNet review: 1695016