## On the commutation of the test ideal with localization and completion

HTML articles powered by AMS MathViewer

- by Gennady Lyubeznik and Karen E. Smith PDF
- Trans. Amer. Math. Soc.
**353**(2001), 3149-3180 Request permission

## Abstract:

Let $R$ be a reduced ring that is essentially of finite type over an excellent regular local ring of prime characteristic. Then it is shown that the test ideal of $R$ commutes with localization and, if $R$ is local, with completion, under the additional hypothesis that the tight closure of zero in the injective hull $E$ of the residue field of every local ring of $R$ is equal to the finitistic tight closure of zero in $E$. It is conjectured that this latter condition holds for all local rings of prime characteristic; it is proved here for all Cohen-Macaulay singularities with at most isolated non-Gorenstein singularities, and in general for all isolated singularities. In order to prove the result on the commutation of the test ideal with localization and completion, a ring of Frobenius operators associated to each $R$-module is introduced and studied. This theory gives rise to an ideal of $R$ which defines the non-strongly F-regular locus, and which commutes with localization and completion. This ideal is conjectured to be the test ideal of $R$ in general, and shown to equal the test ideal under the hypothesis that $0_E^*=0_E^{fg*}$ in every local ring of $R$.## References

- Aberbach, I., and MacCrimmon, B.,
*Some results on test ideals*, Proc. Edinburgh Math. Soc. (2)**42**(1999), 541–549. - Yôichi Aoyama,
*On the depth and the projective dimension of the canonical module*, Japan. J. Math. (N.S.)**6**(1980), no. 1, 61–66. MR**615014**, DOI 10.4099/math1924.6.61 - Yôichi Aoyama,
*Some basic results on canonical modules*, J. Math. Kyoto Univ.**23**(1983), no. 1, 85–94. MR**692731**, DOI 10.1215/kjm/1250521612 - Janet Cowden Vassilev,
*Test ideals in quotients of $F$-finite regular local rings*, Trans. Amer. Math. Soc.**350**(1998), no. 10, 4041–4051. MR**1458336**, DOI 10.1090/S0002-9947-98-02128-X - Donna Glassbrenner,
*Strong $F$-regularity in images of regular rings*, Proc. Amer. Math. Soc.**124**(1996), no. 2, 345–353. MR**1291770**, DOI 10.1090/S0002-9939-96-03030-4 - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157** - Melvin Hochster and Craig Huneke,
*Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), no. 1, 31–116. MR**1017784**, DOI 10.1090/S0894-0347-1990-1017784-6 - Melvin Hochster and Craig Huneke,
*Tight closure and strong $F$-regularity*, Mém. Soc. Math. France (N.S.)**38**(1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR**1044348** - Melvin Hochster and Craig Huneke,
*$F$-regularity, test elements, and smooth base change*, Trans. Amer. Math. Soc.**346**(1994), no. 1, 1–62. MR**1273534**, DOI 10.1090/S0002-9947-1994-1273534-X - Melvin Hochster and Craig Huneke,
*Applications of the existence of big Cohen-Macaulay algebras*, Adv. Math.**113**(1995), no. 1, 45–117. MR**1332808**, DOI 10.1006/aima.1995.1035 - Melvin Hochster and Craig Huneke,
*Indecomposable canonical modules and connectedness*, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197–208. MR**1266184**, DOI 10.1090/conm/159/01509 - Ernst Kunz,
*On Noetherian rings of characteristic $p$*, Amer. J. Math.**98**(1976), no. 4, 999–1013. MR**432625**, DOI 10.2307/2374038 - Gennady Lyubeznik,
*$F$-modules: applications to local cohomology and $D$-modules in characteristic $p>0$*, J. Reine Angew. Math.**491**(1997), 65–130. MR**1476089**, DOI 10.1515/crll.1997.491.65 - Lyubeznik, G. and Smith, K.,
*Strong and weak $F$-regularity are equivalent for graded rings*, American Journal of Mathematics**121**(1999), 1279-1290. - MacCrimmon, B.,
*Strong $F$-regularity and boundedness questions in tight closure*, University of Michigan, thesis (1996). - Hideyuki Matsumura,
*Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR**1011461** - Masayoshi Nagata,
*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0155856** - Dorin Popescu,
*General Néron desingularization*, Nagoya Math. J.**100**(1985), 97–126. MR**818160**, DOI 10.1017/S0027763000000246 - Dorin Popescu,
*General Néron desingularization and approximation*, Nagoya Math. J.**104**(1986), 85–115. MR**868439**, DOI 10.1017/S0027763000022698 - Nicolae Radu,
*Une classe d’anneaux noethériens*, Rev. Roumaine Math. Pures Appl.**37**(1992), no. 1, 79–82 (French). MR**1172271** - Smith, Karen E.,
*Tight closure of parameter ideals and F-rationality*, University of Michigan, thesis (1993). - K. E. Smith,
*Tight closure of parameter ideals*, Invent. Math.**115**(1994), no. 1, 41–60. MR**1248078**, DOI 10.1007/BF01231753 - Karen E. Smith,
*Test ideals in local rings*, Trans. Amer. Math. Soc.**347**(1995), no. 9, 3453–3472. MR**1311917**, DOI 10.1090/S0002-9947-1995-1311917-0 - Karen E. Smith,
*$F$-rational rings have rational singularities*, Amer. J. Math.**119**(1997), no. 1, 159–180. MR**1428062** - Richard G. Swan,
*Néron-Popescu desingularization*, Algebra and geometry (Taipei, 1995) Lect. Algebra Geom., vol. 2, Int. Press, Cambridge, MA, 1998, pp. 135–192. MR**1697953** - Lori J. Williams,
*Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism*, J. Algebra**172**(1995), no. 3, 721–743. MR**1324179**, DOI 10.1006/jabr.1995.1067

## Additional Information

**Gennady Lyubeznik**- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 117320
- Email: gennady@math.umn.edu
**Karen E. Smith**- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 343614
- Email: kesmith@math.lsa.umich.edu
- Received by editor(s): January 4, 1999
- Received by editor(s) in revised form: July 12, 1999, and March 25, 2000
- Published electronically: January 18, 2001
- Additional Notes: Both authors were supported by the National Science Foundation
- © Copyright 2001 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 3149-3180 - MSC (1991): Primary 13A35; Secondary 13C99
- DOI: https://doi.org/10.1090/S0002-9947-01-02643-5
- MathSciNet review: 1828602